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A B S T R A C T  

The goal of this paper is to develop best possible estimates for the higher 
moments of a distribution of a positive bounded random variable, such as 
claim amounts, where these estimates are given in terms of the mean. First, 
upper and lower sharp estimates are developed for the second moment and 
variance in the case of a discrete random variable. A variety of applications 
are considered in detail with particular emphasis on claims analysis. Then 
these upper and lower estimates are generalized to higher-order moments 
and to continuous random variables, as well as to the associated moment- 
generating functions. 

I. INTRODUCTION 

When analyzing the random variable S, defined to equal the aggregate 
amount of claims in a given time, the sums of in-force policy amounts, sums 
of squares, and so on must be calculated. Although this is formalized in 
Section III (Applications), these sums must be calculated for each homo- 
geneous class of policyholders, where homogeneity is defined with respect 
to the underlying claim probability distribution function (pdf). For sizable 
portfolios, this summing process can be formidable and is often precluded 
by the summarization of experience into banded amount classes. The purpose 
of this paper is to develop sharp estimates for the values of the higher 
moments of the policy amount distribution, or any pdf of a positive bounded 
random variable (rv), where these estimates are made using only the first 
moment or mean. 

The motivation for this investigation was the desire to estimate an amount- 
based standard deviation for life insurance claims. Because experience data 
were already banded into amount classes, an exact calculation was impos- 
sible; however, the means of each of the bands were known, so it was 
natural to inquire as to what approximations would be possible having only 
these values. As expected, the error in these approximated standard devia- 
tions is greatly influenced by the relative band size. More importantly, given 
any error tolerance, band size can be predetermined so that the resulting 
estimates are at least that accurate. 
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Here, the term "estimate" is used in the sense of "a  priori estimates" 
of mathematical analysis and not in the sense of statistical estimation. That 
is, for a given pdf defined on a positive bounded rv, the value of all higher 
moments is constrained, a priori, once the first moment and domain interval 
are given. For brevity, the upper and lower bounds developed are referred 
to as estimates rather than a priori estimates. As usual, the qualification of 
an estimate as "sharp" means that it is the best possible. 

In Section II, this definition is formalized, and sharp estimates are de- 
veloped for the second moment of any finite collection of positive numbers, 
such as policy or claim amounts. As a corollary, these estimates are trans- 
lated into estimates of the variance. The relative accuracy of these estimates 
over an interval [a,b], a>0,  depends on r=b/a and can be controlled by 
"banding" amount groups properly. In this section, it also becomes clear 
which types of discrete distributions maximize the relative error for given 
values of r and the mean Ix, and which discrete distribution maximizes the 
error for a given r with no restriction on I~. 

In Section III, a number of applications are explored in detail. For ex- 
ample, interval and point estimates for the variance of expected claims and 
modified confidence intervals are developed. Both fixed and variable claim 
size models are considered. The estimates developed in Section II are shown 
to be applicable both in the context of current amount bands, as well as in 
determining, a priori, what banding size is needed for a given maximum 
error tolerance. In addition, applications are made to the problems of estab- 
lishing an appropriate level for reinsurance retention limits and of analyzing 
the variance of decrement estimators. 

Section IV generalizes Section II to the case of higher moments of an 
arbitrary discrete pdf, and in Section V, the higher moments of a continuous 
pdf are considered. As a corollary, these estimates are used to develop sharp 
estimates for the associated moment generating functions. 

II. SECOND MOMENTS--DISCRETE CASE (SPECIAL) 

Let {xi}7-1 be a collection of numbers from the interval [a,b], a>0.  In 
this section, sharp estimates are developed for the second moment, Ix~(x), 
and the ratio R2(x), where 

1 E x2, (2.1) 
= n 

R2(x) = ~/~2,  (2.2) 
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and 

1 ~ x,.. 
n 

The estimates for V.~(x) are simple functions of ~ and r, while those for 
R2(x) are functions of r alone. 

Considering the distribution {Axi}7=l from [ha,hb], h>0,  it is clear that: 

~ (~ )  = ~,~(x),  (2 .3)  

= (2.4) 

R:(kx) = R2(x). (2.5) 

Consequently, letting k = l/a, (2.1) and (2.2) need be estimated only for {xi} 
in [1,r], since (2.3) through (2.5) can be applied to yield the analogous 
results for {xi} in [a, b]. 

An upper estimate s2(r,p,) for p.~(x) is defined to be sharp if p,~(x)<-sE(r,p.) 
for all {x,} C [1,r], but for any e>0, r > l ,  and p., 1-<p._<r, there exists a 
distribution {y~} C [1,r] with mean equal to ~ and 

Ix~(y) > s2(r,v,) - ¢. (2.6) 

An upper estimate s2(r) for Rz(x) is defined to be sharp in an analogous 
way. That is, R2(x)<-s2(r), but for any e>0,  r > l ,  there is a distribution {vi} 
C [1,r], so that 

R2(y) > s2(r) - ~. (2.7) 

Sharp lower estimates are defined analogously. 
Since it is certainly true that R2(x)<:r 2, it is clear that s2(r) will satisfy 

s2(r)_<r 2 and hence given any d>0,  there is an r > l  such that s2(r)<l +d.  
Consequently, since we also have R2(x)>l [see (2.36) below], 

_< 1 x' _< (1 + d) {x,} c [1,,-]. (2.8) 
n 

That is, the second moment of {xi} can be approximated with the first moment 
to any given degree of accuracy by choosing amount bands [a,b] with r = b/a 
close enough to 1. 

As an application, it is shown in Section 111.2 that the standard deviation 
of {x;} can be approximated with the mean to within a 5 percent relative 
error by choosing d =0.22. Using the observation that s2(r)<-r 2, it is clear 
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that s2(r)~ 1.22 if r<  1.1045. If x~ represents a life insurance policy amount, 
the standard deviation of expected claims, o'(S), can therefore be approxi- 
mated to within 5 percent by "banding" amounts into [arJ, arJ+~], j>-O, 
with r =  1.1045. Unfortunately, analysis of experience between $10,000 and 
$100,000,000 would require more than 90 such bands• and this greatly limits 
the potential usefulness of this approach. Fortunately, this conclusion is a 
result of the crudeness of the estimate S2(F ) ~'r z and not of the general weakness 
of this approach. It is shown below, using the actual s2(r), that d = 0.22 can 
be obtained with the ratio r =  2.48• and this reduces the number of bands 
needed in this example from 93 to 11, an easily workable number. 

In order to make the problem more tractable, the analysis of ~ ( x )  and 
R2(x) can be reduced from the collection of all distributions {Xi~t'~ I C [1,r] to 
a linearly parametrized collection of distributions, denoted D(t). This param- 
etrization is defined on the interval [0,n] and produces one distribution corre- 
sponding to each mean p., l<~-<r .  To see this, let {x,}7.~ C [1,r] be given 
and assume that l<xl<x2<r. Let B satisfy O<~<min(r-xz,x~-l), and 
define {Yl}7-1 by: 

Yl = Xx -- 8 

Y2 = xz + 8 (2.9) 

3<_i<_n. Yi = Xi, 

Then I~(v)= ~(x), and 

Ix~(y) = ~ ( x )  + 2...~ (8 + x2 - xl). (2.10) 
YI 

Consequently, ~ ( y ) >  I~z(x)• and this example illustrates that for a given 
mean, ~, the distribution over [1,r] that maximizes both I~(x) and R2(x) 
has the property that all but at most one value, xj, equals 1 or r. Because 
of this property, such distributions are called polarized distributions and can 
be parametrized over t ~ [0•n] by D(t), where D( t )={x~, l  is defined by: 

{!t , i < n - H -  1• 
x, = - ~ t ] ) ( r -  1) + 1, i = n  - It]• (2.11) 

• i > _ n  - ~t]] + 1 .  

Here, as usual, lit] represents the greatest integer less than or equal to t. 
If one envisions the distributions D(t) as the bead positions of an abacus 
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with n rods and one bead per rod, the parametrization in (2.11) smoothly 
moves one bead at a time from one "one-s ided"  bead position to the other. 
Alternatively, if {xl} is identified with a point in n-dimensional space, R", 
D(t) can be thought of as a piecewise linear transformation from [0,n] to a 
one-dimensional edge of the hypercube [1,r]" extending from (1, 1 . . . .  , 1) 
tO (r, r . . . .  r). 

Since 

Ix[D(t)] = 1 + t ( r _  1), 0 < t _ < n ,  (2.12) 
n 

it is clear that for any {xl} C [1,r], with Ix(x) = Ix, the associated polarized 
distribution is defined in (2.11) with 

n(~ - i) 
t = (2.13) 

r - 1  

Theorem 1 

Let {x,}7~1 C [1,r], with Ix(x) = Ix. Then 

Ix~(x) _< 1 + (r + 1) (Ix - 1), 

(r + 1) 2 
R d x )  < - -  

- -  4r 

Further, the inequalities in (2.14) and (2.15) are sharp. 

(2.14) 

(2.15) 

Proof 
Assume that (2.14) has been established. Then 

Rz(x) <- 1 + (r + i) (I~ - 1) 
IX2 (2.16) 

As a function of IX in [1,r], the right-hand side of (2.16) is maximized when 
Ix = 2r/(r+ 1). Consequently, (2.15) follows by substitution. 

In order to establish (2.14), it is sufficient to show that this inequality is 
satisfied for all polarized distributions D(t). By using (2.11), 

n - H -  1 + ~t]r a + [(t - H ) ( r -  1) + 1] 2, 
IX~[D(t)] 

n (2.17) 
O < t < n .  
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Let 

t = m + s ,  m = 0 , 1 , . . . , n  - 1; 0 < s  < 1. ( 2 . 1 8 )  

Then [t]=m and (2.17) becomes 

n - m - 1 + mr 2 + [ s ( r -  1) + 1] 2 ' 
Iz~[D(t)] 

n 

m = 0 . . . . .  n -  1 ; 0 - < s - <  1. (2.19) 

The inequality for s was extended to s = 1, because it is straightforward 
to verify that the right-hand side of (2.19) achieves the same value for m = m '  
and s = 0  as it does for m = m '  - 1  and s = l .  For a given m, the right-hand 
side of (2.19) is a quadratic function of s with positive second derivative. 
Consequently, it is maximized over [0,1] when s = 0  or 1. Hence, it is 
sufficient to consider (2.19) only for integral m = 0 ,  1 . . . .  , n and s = 0 .  For 
the resulting values of t = m,  

n - m  + mr 
Ix[D(t)] = , m = 0, 1, ..., n (2.20) 

n 

n - r e + m r  2 
Ix~[D(t)] = , m = 0, 1, ..., n (2.21) 

n 

and a calculation shows that (2.14) is satisfied with equality at these points. 
Hence, it follows in general for 0 < s <  1. 

To see that the inequality in (2.14) is sharp, it is necessary to provide 
examples of distributions {xi} from [1,r], with a common given mean ~, 
such that the resultant values of ~'2(x) can be chosen arbitrarily close to the 
upper bound 1 + ( r+  1)(g. - 1). Let r >  1 and I~, 1< ~,<r, be given and define 
p = ( ~ - 1 ) / ( r - 1 ) .  Since the inequality in (2.14) dearly provides sharp re- 
suits when i~= 1 or ~ = r ,  only l < ~ < r  is considered, and hence p>0 .  Let 
cj be a sequence of  positive rational numbers, cj =mini ,  converging to p, so 
that with kj = ( c j -  p)/cj, 

0 < Xj < 1, (2.22) 

X i ---* 0 as j --'- ~. (2.23) 

This can be accomplished since p>0 .  Now, consider the distribution {y~}, 
i =  1, 2 . . . .  , nj, defined by: 

~ 1  1 - < i < n  i -  mi, 
Y ' =  I , r -  h i ( r -  1) n j - m j +  l < _ i < n j .  

(2.24) 
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Note that y; ~ [1,r] for all i due to (2.22). Also, a calculation shows that 
~(y) = ~ and 

~'2Cv) = 1 + cj(r a -  1) + c i h j [ k j ( r -  1) 2 -  2 r ( r -  1)]. (2.25) 

However, since h j~0 and cf-*p, the right-hand side of (2.25) can be chosen 
arbitrarily close to its limit value of 1 + p(r a -  1), which equals 1 + (~ - 1) 
( r+ 1). Hence, the inequality in (2.14) is sharp. Letting ~ =2r / ( r+  1), this 
example also shows the inequality in (2.15) to be sharp. []  

Corollary 
Let {x~}7.1C[1,r], with Ix(x)= I~. Then 

< ( r  - - 1 ) ,  

oa(x) < (r -- 1) 2 

 2(x) - 4 r  

Further, the inequalities in (2.26) and (2.27) are sharp. 

(2.26) 

(2.27) 

Proof 
Since oa(x) = ~(x)  - ~2, the results follow directly from Theorem 1. []  

Of course, the inequalities in Theorem 1 and the above Corollary can be 
modified to apply to the interval [a, b] by use of (2.3) through (2.5), and 

oa(kx) = h2oa(x). (2.28) 

That is, if {xi} C [a,b], choose X = 1/a. Then, {hxi} C [1,r] with r=b/a. 
From (2.26), since this inequality is sharp, distributions of maximal var- 

iance must have a mean equal to ( r+  1)/2, the midpoint of [1,r]. Corre- 
spondingly, due to (2.13), the associated polarized distribution is given by 
t=n/2. Also, the distributions with maximal ratio of variance to mean squared 
must have a mean given by: 

2r 
r + 1" (2.29) 

Consequently, the associated polarized distribution D(t) is given by: 

n 
t = ~ (2.30) 

r + l "  
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That is, the proportion of points at the left endpoint 1, f(1), satisfies 

= r e ,  0 < e t -  1 .  ( 2 . 3 1 )  
f(1) r + 1 n '  

In other words, such distributions are always skewed to the left, with the 
tendency toward skewness increasing as r = b / a  increases, 

f(1) ~ 1, as r ~ ,  (2.32) 

since for r large, e, is equal to t, which converges to zero as r increases. 
This is also evidenced by noting that due to (2.29), I~ is an increasing 
function of r with upper bound equal to 2. 

A lower bound for Ix'z(x) is fairly easy to develop by utilizing the well- 
known Cauchy-Schwarz inequality [2], which states that for given ai, bi, 
i=  1, ..., n, 

with equality if and only if there are real numbers t~, 13, so that 

(~ai + f~bi = O, i = 1 , . . . , n .  (2.34) 

Letting a~ =x;, b~ = 1 yields 
1/2 

o r  

~2 < Ix~(x), (2.36) 

with equality if and only if all xi are equal, due to (2.34). Consequently, ix 2 
is a sharp lower bound for ~ (x ) .  Hence, 1 is a sharp lower bound for R2(x).  
Finally, although it also follows from above, it is quite obvious by definition 
that 0 is a sharp lower bound for oa(x). 

Summarizing the above sharp estimates, we have: 

~2 < ~ (x )  <- 1 + (r + 1)(1~ - 1), (2.37) 

(r + 1) 2 
1 < R (x) < (2.38) 

- - 4 r  ' 
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0 -< o~(x) -< (r - I~)(~ - 1), (2.39) 

o (x) ( r -  
0 < IX2 < - - ' 4 r  (2.40) 

where .Ix;} C [1,r] with Ix(x) = Ix. 

i n .  APPLICATIONS 

1. Interval Estimation of the Variance of Expected Claims 
Let Aij equal the exposure amount of the i-th policy in a given class Cj, 

homogeneous with respect to the claim probability distribution function. Let 
X i be the binomial random variable defined on Cj, so that 

Prob (claim on any policy in Cj) = Prob (Xj = 1) = qj. (3.1) 

Then S, defined by 

S = E A,jXj, (3.2) 

is the random variable that represents the aggregate amount of claims in the 
time interval during which (3.1) is valid. In the terminology of risk theory 
[1], this is the individual risk model for aggregate claims. In general, the 
Aij are also random variables that, for a given class Cj, are assumed to be 
independent and identically distributed with mean I~ i, and variance ~ .  As- 
suming the X: to be independent, we have from [1] that 

IX(S) = E n; IXj q ,  (3.3) 

~(S) = E nj ~ qj (1 - q:) + E nj. ~ qi, (3.4) 

where nj is the number of policies in class Cj. Now ifAij=aij is known and 
fixed in advance, as is common for life insurance, (3.2) is simply a linear 
combination of independent binomial variables, and one has: 

= ao q;, (3.5) 

= z (1 - ,7,.). (3.6) oz(S) ~, ao qj 

In this fixed-claim-amount setting, if in-force policy data are already banded 
and summarized into intewals, lk= [ak, ak+l], k->l where a l>0,  let 

r~ ak÷l k > 1, 
a~ 
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Cjk = class of policies in Cj with aij 6 ~, 

n/k = number of policies in Cjk, 

~jk = average policy amount in C/k. 

Then for each class Cj, the following is true by (2.37): 

Consequently, by combining (3.6) and (3.7), 

Y. qj (1 - qj) -< 

<- • njk qj (1 -- qj) [a~ + ak (rk + 1) (Wjk -- ak)]. (3.8) 

With policy data already banded, (3.8) provides the resultant interval esti- 
mate for o~(S), which may or may not be acceptable. In addition, the amount 
of relative error in the point estimate discussed in the next section is also 
fixed. 

However, when it is possible to choose band size, as it is when experience 
systems are rewritten, the amount of error in the resultant estimates can be 
controlled. To see this, let In, b] be an amount interval, a > 0, such that a o E 
[a,b] for all i, j .  For a given value of r>  1, let N be the solution of: 

r ~ = b/a, N = Ix] + 1. (3.9) 

Define the bands J,  by 

J ,  = [ar*, ar*+~], k = 0, 1, ..., N - 1. (3.10) 

Also, let C/k, n/k and I~i, be defined as above only with reference to Jk rather 
than Ik. Then for each class Cj, the following holds due to (2.38): 

(r + 1) 2 
E njk W~, -< X a~ < - -  X nj, ~ , .  (3.11) 
k i -- 4r k 

Consequently, 

njk qj(1 - q~) ~ < ~(S)  -< (r + 1) 2 ~ n~ qj(1 - qj.) V,~. (3.12) 
- 4 r  

The problem of choosing r is discussed in detail in the next section. 
However, from (3.12), any degree of accuracy can be achieved by choosing 
r close enough to I. 
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For the general claim amounts case, assume that the Aii are independent 
random variables that are identically distributed for eachj  with mean p~j and 
variance ~ .  If these distributions are assumed given by mathematical for- 
mula, ;xj and ~ will often be straightforward to compute and o-:(S) will be 
given directly by (3.4). On the other hand, these distributions may be defined 
empirically with reference to actual claim data. 

If this is the case, Theorem 1 can be utilized in the following way. Let 
[a, b], a > 0 be an amount interval that contains all claims, which are assumed 
to be banded into amount intervals lk as defined above with associated r~. 
Also, let Cjk denote the collection of claims from class Cj with claim amount 
in the interval Ik, rnjk the number of such claims, I~  their mean, and ~j, 
their variance. Since @ in (3.4) is defined as the variance of all claims from 
class C~ and ~k the variance of such claims conditioned on their being within 
the amount interval Ik, they are related by a general formula involving con- 
ditional expectations [1]. Specifically, lettingAj denote the claims from class 
cj, 

where 

Hence, 

= Var (Aj) 

= Var [E (Aj[/k)] + E [Var (Ajllk) ] 

= Var [l~i~, ] + E [o~j~]. 

m j k  m j k  
(3.13) 

p~j is defined as in (3.4) as the mean claim from class Cj, that is, and 
p,j=E[l~jk ]. Applying (2.39) to ~k: 

1 

_ < ! ~,, mjk [(~jk - ~,~)2 + (rk ak  - ~ j k ) ( ~ j k  - a~)] ,  (3.14) 

which can be used in (3.4) to provide an estimate of o-2(S) given the current 
banding classes Ik. As was the case in (3.8), the resulting interval estimate 
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may not be acceptable if the amount bands are too large. However, if it is 
possible to choose a band size, such as when experience-monitoring systems 
are revised, the error in the resultant estimates can be controlled. 

By applying (2.40) in (3.13) instead of (2.39), as was done above, the 
interval in (3.14) has length that is a function of (rk-1)  2. That is, the 
estimates can be made arbitrarily good by choosing rk close to 1. Unfortu- 
nately, this observation is of little practical value in choosing an amount 
band size, since in this context, the mjk and 0.j~ values above are random 
variables that depend on rk. 

To circumvent this difficulty, we utilize the collective risk model [1] for 
S. Restricting our attention to a specific risk class Cj, let S represent aggre- 
gate claims for this class using a compound Poisson model: 

S = ~ X, = x~ Nt (3.15) 
i=1 1-1 

where the number of claims N is assumed to have a Poisson distribution 
with parameter h, and the Xi's are independent, identically distributed ran- 
dom variables that are also independent of N. The second representation for 
S decomposes the original sum into distinct claim sizes of amount Xl, which 
without loss of generality can be assumed to be finite in number (perhaps 
quite large), and Nt is the random number of such claims. As it turns out 
(see [1]), these Nt are independent Poisson random variables with parameter 

= V ( x , ) .  
Assume next that amount bands Jk are defined as in (3.10) and let Nk 

represent the number of claims in Jk. Clearly, Ark equals a sum of NI values 
above corresponding to whether xt is in Jk or not. Also, because the Nt are 
independent Poisson with parameters given above, the N~ are also indepen- 
dent Poisson with parameters 

hk = k [F(ar '+') - F(ata)]. 

Hence, S can be decomposed as a sum of independent compound Poisson 
random variables, S,,, representing the aggregate of all claims in Jk- Rein- 
troducing the subscript j to represent risk class Cj, let ~*jk represent the 
expected value of claims from Jk and ~k the variance of such claims. Also, 
let Xjk be the Poisson parameter for Njk. We then have: 

= 

= Z X~.k (O.~k + %'7k). (3.16) 
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Using (2.40) in (3.16) for o3]k, we obtain the following analog to (3.12): 

hik tZfk < ~(S)  < (r + 1) 2 E kjk Ixj~ (3.17) 
- -  - -  4r 

The problem of choosing r is discussed next. 

2. Point Estimation of the Standard Deviation of Expected Claims 
Although (3.8), (3.12), (3.14) and (3.17) provide interval estimates for 

o~(S), the following simple Lemma provides a point estimate with minimal 
relative error. 

Lemma 1 

Let a,c be given positive real numbers and x an unknown real number 
satisfying: 

a < x < (1 + c)a. (3.18) 

Let 2(h) denote the point estimate for x defined by: 

2 (h) = (1 + hc)a, 0 - h -< 1. (3.19) 

Then the absolute value of the error of the estimate .~(h) relative to itself is 
minimized when X = 1/2. 

Proof 
Utilizing (3.18), (3.19), and the fact that 2(k)>0,  we get 

- X c  _ < x ~ - 2 - < c ( 1 -  X )  

l + k c  2 l + hc" 

That is, 

(3.20) 

< m a x  + k c ' l  + kc " 

A straightforward analysis yields that f (h)=c(1-k) / ( l+hc)  is a positive 
decreasing function over [0,1], which agrees with g(k) = kc/(1 + hc), a pos- 
itive increasing function, at k = 1/2. Consequently, the relative error defined 
in (3.21) is minimized when k = 1/2. [ ]  
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To apply Lemma 1 in the context of (3.12) or (3.17), assume d > 0  is 
given and let r be chosen to satisfy: 

(r + 1) z 
= 1 + d. (3.22) 

4r 

Since h(r)=(r+ 1)2/4r is an increasing function of r for r > l  and h(1)= 1, 
it is clear that the solution of (3.22) must exist, be unique and be greater 
than 1. Rewriting (3.12) [an identical development holds for (3.17)]: 

(~ n~kqi(1-qj)~i~)ln<-(r(S) 
112 

Let c =(1 +d) v2 -  1 and define 

. (3.24) 

Then, by using (3.21), 

C 
Iv(s)  - o-(S)l < (3 .25 )  

- 2 + c  

Hence, in order for the point estimate in (3.24) to have a maximum error 
relative to itself of 100e%, 0<e  < 1, that is, 

(1 - ~) 6"(S) -< o-(S) < (1 + e) d-(S), (3.26) 

the values c, d, and r must be chosen to satisfy: 

2e 
C ~ 

1 - e  

d = (c + 1) 2 - 1 

(3.27) 

(3.28) 

r = 1 + 2 (d + X/-dr-'~d) (3.29) 

The value of r in (3.29) is the larger solution of (3.22) expressed as a 
quadratic equation in r, where this root is given by the quadratic formula. 
Table 1 provides some numerical results: 
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TABLE 1 
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0.5 0.1 
c 2.0 0.22 
d 8.0 0.49 
r 33.97 3.70 

0.05 
0.11 
0.22 
2.48 

0.01 
0.02 
0.04 
1.49 

0.005 
0.01 
0.02 
1.33 

For example, to achieve a relative error of 5 percent in the point estimate 
of tr(S), the value r =  2.48 will suffice. Once r is chosen, the number of 
amount bands N needed to analyze experience in the interval [a,b], a >0, is 
given in (3.9). For example, if a = 10,000 and b = 100,000,000, the solution 
x of (3.9) is approximately 10.14. Consequently, N =  11 here, as noted in 
Section II. Limiting the relative error to 1 percent would require 23 bands. 

Because such good accuracy can be achieved with only 11 bands, this 
approach is practical to implement both for industry-wide applications, such 
as the TSA Reports of Mortality, Morbidity and Other Experience, and for 
individual company experience studies. 

As noted above, an identical development holds for the compound Poisson 
model in (3.17), and Table 1 applies in this context as well. As for the 
interval estimates of (3.8) and (3.14), where amount bands are already given, 
again the midpoint estimators are used for minimal relative error. In these 
cases, the relative error is given in (3.25), where l + c  equals the square 
root of the ratio of the upper to lower bounds of the respective intervals. 

3. Modified Confidence Limits 

Once tr(S) is estimated to the required degree of accuracy by 6(S), it can 
be used in conjunction with the central limit theorem [4] to produce confi- 
dence intervals for S, the aggregate claims during ~i given period of time. 

For example, let Z,~ correspond to the positive boundary value of the 
symmetric 100(1-c  t)% confidence interval for a normally distributed ran- 
dom variable Z. That is, 

Prob [Izl < Z~IZ-N(O, 1)1 = 1 - et. (3.30) 

Then according to the central limit theorem, the 100(1-  a)% confidence 
interval for S is approximately: 

~(S) - Zo a(S) <- S < o.(S) + Z~ or(S). (3.31) 
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If 6(S) as calculated above has a maximum relative error of 100e%, in the 
sense of (3.26), the corresponding modified confidence interval for S becomes: 

Ix(S) - (1 + c) Z~, 6-(S) _< S -< Ix(S) + (1 + e) Z~, ~'(S). (3.32) 

4. Retention Limits 

The appropriate level for retention limits for reinsurance purposes can also 
be studied with this approach. To see this, let R > 0 be given and define S R 
by: 

S R = ~ min(Aij, R) Xj, (3.33) 

where Xj and Aij are as defined in Section IliA. Then S R is the random 
variable that represents the aggregate amount of claims payable if the reten- 
tion limit is set at R. If IX(S R) is considered an appropriate value for the 
minimum reserve needed against the contingency insured, an appropriate 
"surplus" level can be determined by considering the random variable, M R , 
defined by: 

M R = SR/IX(SR). (3.34) 

By the central limit theorem, the 100(1 - a ) %  confidence interval for M R is 
approximately given by 

which can be modified as in (3.32) to 

o-(s R) 
Ix(sR), (3.35) 

e(s R) 
_ 11 _< (1 + e) Ix(sR). (3.36) 

For the level of confidence desired, a,  existing surplus would limit the value 
of dr(SR)/IX(S R) that is acceptable. In general, this ratio would be expected 
to decrease as the value of R decreases. Of course, once &(S) has been 
estimated as in Section III.2, the value of the ratio ~r(SR)IIX(S R) can be readily 
determined for R equal to any of the amount band boundary points. 

For example, assume that d-(S) has been determined as in (3.24). Then 
for R = ar k, 
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e(S 

qy (1 - qj) nj, ~x]~ + R 2 ~ nj, 

1 + ~ , (3.37) 

and these values are straightforward to calculate because the various param- 
eters are assumed known. For ark<R<ar k+~, a similar formula would be 
obtained except that R2njk and Rnjk would be replaced by (~k)2njk and Ix~knjk, 
respectively, where ~ is defined analogously to ~jk but with all amounts 
limited to R. For such intermediate values of R, the ratio in (3.37) could be 
estimated by utilizing an approximation for ~ such as: 

: R ° 

~ = ~jk kar~+~ _ ar~] (p.), -- ar*), R E Jk, (3.38) 

where v >0 is chosen to reflect the magnitude and direction of skewness 
present in the distribution of amounts in Jk- For example, it is straightforward 
to check that v = 2 when this distribution is uniform. In general, v > 2 reflects 
skewness to the left, v<2  skewness to the right. 

5. Variance of  Decrement Estimators 

As a final application, consider the formulas presented in [8] for the 
moments of ~ defined by (notation changed): 

EA, X, 
¢ = E A ,  " (3.39) 

where Ai is the number of exposure units for individual i, i = 1, ..., n, and 
Xi =Xi(A) is a binomial random variable such that: 

Prob (X, = 1 ]Ai = a) = q(a). (3.40) 

If it is assumed that A; and Xj are mutually independent for all i and j ,  and 
that q(a) =q,  the variance of ~ as derived in [8] is: 

Var (~) = q(1 - q)  E [ ~  A f f ( ~ .  A,)2]. (3.41) 
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Of course, when A~=a i is fixed and known in advance, the presence of the 
expectation E in (3.41) is only notational, and this formula is clearly equiv- 
alent to (3.6) restricted to one homogeneous class C i. In addition, although 
it is less apparent, if the method utilized to produce (3.41) is applied to S 
defined in (3.2), the general formula (3.4) is produced. 

Let [a, b], a > 0 be given where this interval contains the range of Ai. For 
r>  1, let Jk be a partition of [a,b] as defined in (3.10) and define ~k as the 
restriction of q in (3.39) to Jk. That is, 

EA, Xi 
Oh = E A ,  ' A,@./k. (3.42) 

Since q(a) =q, it is clear that E(0k) =E(0) =q ,  and 

Var(Ok) = q ( 1 -  q ) E [ ~ A f f ( ~ A i ) Z I A ,  E4] .  (3.43) 

To estimate (3.43), let Nk be defined as the random variable representing 
the number of claims of amount A~ E Jk" Note that Nk is a random variable 
even when A~=a~ for all i. Applying (2.38), we have that for nk>--l: 

(r + 1) 2 1 
I < E [ X A f f ( X A , ) 2 [ A , ~ J k ,  Nk =nk]< . (3.44) 
nk 4r nk 

in (3.44) with respect to Nk, the following estimate If expectations are taken 
for Var(0k) is produced: 

- <Var(0k) < - - q ( 1  - q) E . (3.45) 
- 4r 

For a given value of r, E[1/Nk] will usually increase as k increases. In 
particular, both bounds in (3.45) as well as the size of the bounded interval 
will tend to increase as k increases, implying a general increase in experience 
volatility as policy amounts increase. As noted before, the estimates in (3.45) 
are sharp and can usually be utilized to estimate Var(0k ) to any given degree 
of accuracy by choosing r close enough to 1. Also, Var(0k) can be approx- 
imated by 62(0~), using Lemma 1, where 

( 2 )  [~-~k]' ( r -  1)2 (3.46) 6"2(0k) = 1 + q (1  - q) E c = 4r ' 

and the relative error of this approximation is no greater than e = c/(2 + c). 
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Although (3.45) can also be utilized to estimate Var(~) with r=b /a  and 
N =  Y. Nk, the result may be considered quite crude for realistic values of b/a. 
For example, if a = 10,000 and b = 100,000,000, (3.45) becomes 

q ( 1 - q ) E [ N  ] - < V a r ( 0 ) - < 2 5 0 1 q ( 1 -  q ) E [ 1 ] ,  (3.47) 

and the resultant value of 62(0) will have a maximum relative error of almost 
100 percent. However, for n large, the absolute error may be quite small 
and the estimates may have practical value. 

If it is assumed that q(Ai) is not constant in general, but is constant over 
each J~ where q(Ai)=qk, (3.45) and (3.46) can still be utilized but with 
q =q~. 

6. Practical Considerations 

Throughout this section, qj has denoted the probability of a claim i,a class 
Cj where this probability was defined on an individual policyholder basis. 
Also, class Cj was assumed homogeneous with respect to the value of this 
probability and, consequently, would typically be defined in terms of indi- 
vidual risk characteristics and the various underwriting parameters of the 
insurance product under study. To simplify calculations, however, it is often 
desirable to combine various risk classes. For example, ages may be quin- 
quennialized or "rated" classes grouped. This is because the parameters qj 
must be estimated based on actual experience from each class, and the 
experience of many classes is too sparse to analyze confidently. 

Given some restrictions, the effect of such groupings on the mean and 
variance of S as given in (3.3) and (3.4) can be analyzed. To this end, let 
{Cj} be a collection of classes to be grouped with respective claim proba- 
bilities {qj} and class sizes {nj}, n = ~ n~. As a combined class, the claim 
probability q is given by 

q = ~, n s q tn .  (3.48) 

For notational convenience, let ~, and o -2 denote that part of the summations 
in (3.3) and (3.4) that corresponds only to the classes under consideration. 
Also let ~ and 52 be analogously defined under the assumption that UCj is 
a homogeneous class with claim probability q as defined in (3.48): 

-~ = ~, n: }xj q (3.49) 

Fr 2 = ~, nj lx~ q(1 - q) + ~, nj ~ q (3.50) 
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Lemma 2 

Let ~, -~, o -2, ~2 be defined as above. Further, assume that for the risk 
classes {Ci} combined in (3.48), that V.j = V.o and ~ = ~o. Then: 

= p., (3.51) 

~2 > o a. (3.52) 

Proof 

Because I~j = ~o and Znj q = Zn/qj, (3.51) follows immediately. For (3.52), 
first note that by the same line of  reasoning, 

n~ ~ q = ~ n~ ~ qj. (3.53) 

Hence, 

By (3.48), 

Vr 2 - o a = iXo 2 ~ . .n j [q  (1 - q) - qj(1  - q/)] 

= ~ E n / q / ( q / -  q). (3.54) 

which, when substituted into (3.54), yields: 

Fr2 - °'2 = IXo 2 Z n ~  q/(q/ _ q,). (3.56) 
j,l n 

If m represents the number of classes to be combined, it is clear that the 
summation in (3.56) has m(m - 1) terms, because only those terms wi th j  4: l 
will be nonzero. By symmetry, these terms can be paired off, yielding 

1 (3.57) ~y2 _ 0.2 = ~2 E [nj n I q1 (qJ -- ql) + nj nt ql (qt - qj)] n 
j<l 

= p.~ ~ n ~  (qj _ q,)2, 
j<l n 

completing the proof. [ ]  

Y~ n~ (qj - q3 
q/ - q = , (3.55) 

n 
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IV. HIGHER MOMENTS--DISCRETE CASE 

Let {Xl}7_ 1 be a collection of numbers from the interval [a, b], a > 0. Let k 
be a real number, k>_ 1, and define Ix~(x) and Rk(X) analogously to the case 
k = 2  by: 

1 ~ ~, (4.1) 
~ ( x )  = n 

R~(x) = ~ / ~ k .  (4.2) 

As in Section II, tz~(x) and R~(x) need only be estimated over the interval 
[1,r], because 

tz'k(kr) = hklx'k(X), (4.3) 

R~(Xx) = Rk(x). (4.4) 

Also, the value of these functions need only be considered on polarized 
distributions, because if {xi} and {Yi} are given as in (2.9), 

~ ( y )  = Ix~,(x) + l{[(x2 + ~)k _ ~ 1  _ [(x, + ~)k _ ~ ] } ,  (4.5) 
n 

which exceeds ~;,(x) because x2>xl and for [i>0 and k> 1, (X+~)k--x k is 
an increasing function o fx .  

Theorem 2 

Let {xi~=l C [1,r] with ~(x)=  Ix, and k a real number satisfying k > l .  
T h e n ,  

r k - 1 
Ix~(x) -< 1 + (p. - 1), (4.6) 

r 1 

( k -  1) (k-l) (r k - 1)" (4.7) 
g~(x)  <_ ~ (r  - 1) (r  ~ - r)(~ '~" 

Further, the inequalities in (4.6) and (4.7) are sharp. 

Proof 
Assuming (4.6), it is clear that 

n~(x)_<~ l + \ r _ a !  ( ~ - 1 )  . (4.8) 
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As a function of ~ on [1,r], the right-hand side of (4.8) is maximized when 

k ( r  ~ - r )  
I~ = ( k -  1 ) ( r  k -  1)' (4.9) 

and (4.7) follows by substitution. 
To establish (4.6), let D(t) be defined as in (2.11) and t parametrized as 

in (2.18). Then, 

n - m - 1 + m r  k + [ s ( r -  1) + 1] k 
~ [D( t ) ]  = 

n 

m = 0 , . . . , n  - 1 ; 0  < s - <  1. (4.10) 

For each m, the right-hand side of (4.10) is a polynomial in s with positive 
or identically zero second derivative. Consequently, it is maximized over 
[0,1] when s = 0  or 1. Hence, it is sufficient to consider (4.10) only for 
integral m = 0  . . . .  , n and s = 0 .  For such values, 

n - m  + m r  
Ix[D(t)] = , m = 0, 1 . . . . .  n (4.11) 

n 

n - m  + m r  k 
g,~,[D(/)] = , m = 0, 1, . . . ,  n (4.12) 

n 

and a calculation shows that (4.6) is satisfied with equality at these points. 
Hence, it follows in general for 0 <s < 1. 

To see that the inequality in (4.6) is sharp, consider the example given 
in the proof of Theorem 1. Corresponding to (2.25), 

~,(y) = 1 + cj (r ~ - 1) + cj kjg(r,  Ks), (4.13) 

where g(r, hi) is a series or polynomial of  order k in r. As j increases, the 
right-hand side of (4.13) converges to 1 + p(r k -  1), which equals the right- 
hand side of (4.6), because p = (~ - 1 ) / ( r -  1). Consequently, the inequality 
in (4.6) is sharp. Letting ~ be defined as in (4.9) shows the inequality in 
(4.7) to be sharp as well. [ ]  

From the above proof, the distribution that maximizes the ratio Rk(x) must 
have a mean Ix given in (4.9). As was the case in (2.29) where k =  2, this 
mean is an increasing function of r with upper bound equal to k / ( k -  1). In 
addition, the associated polarized distribution D(t) is given by t defined in 
(2.13), which due to (4.9) equals, 
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n [ 1 _ k ] (4.14) 
t = k ~  r 1 r ~ -  1 " 

Consequently, the proportion of points at the left endpoint 1, f(1), satisfies 

. . . . .  , 0 < e , -<  1. (4 .15)  f(1) 1 k -  1 r 1 r k - 1 n 

Utilizing the fact that the arithmetic mean of any collection of numbers, in 
particular {1, r ,  . . . ,  r k-  x}, must equal or exceed the geometric mean, it is 
possible to show that for integral k, t in (4.14) is a decreasing function of r 
(that is, negative first derivative) and, correspondingly, f(1) is an increasing 
function of r satisfying 

.f(1) --~ 1, r ~ ~, k -> 1. (4.16) 

This statement holds for nonintegral k as well and can be proved by a more 
careful analysis of t '(r). Also, for given r >  1, t converges to 0 as k increases, 
therefore 

i l l )  ---* 1, k ~ ~, r -> 1. (4.17) 

Lower bounds for ~,(x) can be developed by utilizing a generalization of 
(2.33) known as H61der's inequality [10], [11], which states that for given 
ai,  bi, i = 1 . . . .  , n ,  

• . xl/p 
Y la2,,I-< (Y lb, lq) l'q, (4.18) 

where p ,  q are real numbers, 1-<p, q_< ~, satisfying: 

1/p + 1/q  = 1. (4.19) 

W h e n p  = 1, q is taken as equal to ®, and the corresponding sum is defined 
as equal to its limiting value as q--* ®, 

lim lq) ''' -- max {Ib, I}. (4.20) 

In addition, (4.18) is satisfied with equality if and only if there are real 
numbers a ,  13 so that 

ct [a,~' + 13 Ib, -- 0,  i = 1, . . . ,  n. (4.21) 
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Letting ai=x~, b~= 1 , p = k ,  and q = k / ( k -  1), (4.18) yields 

p? < p.~(x), (4.22) 

with equality if and only if all xi are equal due to (4.21). 
Consequently, p / i s  a sharp lower bound for ~;,(x), and 1 is a sharp lower 

bound for Rk(X). 
As currently stated, Theorem 2 is not applicable to all distributions of a 

discrete positive bounded rv. This is because it was assumed that the distri- 
bution could be realized as a finite collection of points in [a,b], a >0. Iff(x) 
is a probability density function defined on { Y ~ I  C [a,b] such that f(yj) is 
rational for all j ,  it can be so realized by defining 

M = min {N IN, Nf(yj) integral for all j}, 

n i = Mf(yi), j  = 1, ..., m 

Xi:{  1 
m 

l < i < n ~  

n - n , ,  + 1 < i  < n  

(4.23) 

n = ~ n j .  

Conversely, every finite collection of points from [a, b], a > 0, can be iden- 
tified with a probability density function f(x) with rational range. However, 
because every density function can be approximated to any degree of ac- 
curacy with density functions of rational range, it should be expected that 
(4.6), (4.7), and (4.22) are valid in general. 

To this end, let f(x) be a probability density function of a discrete rv, X 
[a, b], a > 0, and define, 

~'k = ~ ~ f(xi), k_> 1, (4.24) 

P. = ~'1, 

R k = p,~,/I ~k. (4.25) 

As usual, only the interval [1,r] need be considered. 
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Theorem 3 
Let f(x) be a pdf of a discrete rv defined on [1,r]. Then 

1 + k r  - 1 1  - 1),  (4.26) 

( k -  1) (k-l) (r k -  1) k 

Further, all inequalities are sharp. 

(4.27) 

Proof 
First, assume that f(x) has a finite domain. That is, let f(x) be given and 

defined on {x;}'7=1 C [1,r]. Given e>O, define g,(xl), i = 1  . . . . .  m, so that 
g~(xi) is rational and 

[f(xi) - g,(xi)[ _< e/(mF'), (4.28) 

~_,g,(xi) = 1. (4.29) 

If [f(xi), ..., f(x,,)] is identified with a pointy ~ R" on the hyperplane defined 
by E Yi = 1, it is clear that (4.28) and (4.29) require the existence of rational 
points on this hyperplane that are arbitrarily close to y.  The existence of 
such points is a fundamental property of R",  that is, that rational points are 
dense in R" [3]. 

Given g,(x), it is clear that 

[~,(t-') - ~,fg,)[ -< e. (4.30) 

However, the construction in (4.23) shows that Theorem 2 and (4.22) can 
be applied to p.~,(g,) and (4.26) is satisfied. Because ¢ can be arbitrarily 
chosen, (4.26) must also hold for ~ , ~ .  

Now for arbitraryf(x) defined on {x~}~'..1 C [1,r], if Ix~,q) is assumed to 
exist, it is clear that for every e > 0, k fixed, there is an integer N such that, 

~ii]~xi) < e, (4.31) 
i=N+ I 

f(xi) < ~. (4.32) 
i=N+I 

Let hN(X) be a pdf defined on {xl, ..., XN} SO that 

f(x~) i =  1, N. 
= N , . . . .  

El(x,) 
1 
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Applying (4.31) and (4.32), 

E 
IV.~,(.f) - w~(hu)[-< ~ [W~,(f) + 1]. (4.33) 

1 - - e  

Hence, because (4.26) is satisfied with h2v(x), it must also hold for f(x) due 
to (4.33) and the fact that 

lim ~(h,v) = p,(f). (4.34) 

The inequalities in (4.27) follow from (4.26) as in Theorem 2. Finally, the 
inequalities are sharp due to the example in Theorem 2. []  

Because (4.3) and (4.4) are valid in general, Theorem 3 can be applied 
to any pdf f(x) of a discrete rv defined on [a, b], a > 0. 

Corollary 

Let f(x) be a pdf of a discrete rv defined on [1,r], and let Mx(t) denote 
the moment-generating function of x, 

Mx(t) = ~ e= f(x). (4.35) 

Then, 

e ~<Mx( t )  < e  t + r -  1 (e~ - e ' ) .  (4.36) 

Further, the inequalities in (4.36) are sharp. 

Proof 

Rewriting (4.35) as 

Mx(t) = • tk p'--~ (4.37) 
k ! '  k 

(4.36) follows directly from (4.26). For 1-< i~_<r, if the point mass pdff~(x) 
is considered, where f~,(~)= 1, f~(x) = 0 otherwise, the inequality on the left 
in (4.36) is seen to be sharp. Also, for l_<v,_<r, let g~(x) be defined by 

(r - ~)l(r - 1) 

g,(x) = (1~ - 1)/(r 1) 
0 

x = l  
x = r  

elsewhere. 
(4.38) 
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Clearly, 

, ~ )  = ~, 
r - ~  ~ - 1  

w~(g~) = r -  1 + r -  1 r*, k >  1, 

and a calculation shows that 

r k - 1~  
~( ,g , )  = 1 + k r -  1 / (~ - 1), 

(4.39) 

k -> 1. (4.40) 

Consequently, the moment-generating function associated withg~(x) is given 
by the right-hand estimate in (4.36). [ ]  

V. HIGHER MOMENTS- -CONTINUOUS CASE 

Let f(x) be a continuous pdf defined on [1,r] and ~ ,  ix and Rk defined 
analogously to (4.24) and (4.25), with 

r 

~; = J x~/(x) ax, k_>l. (5.1) 
I 

Theorem 4 

Let f(x) be a continuous pdf defined on [1, r]. Then, 

Ix ~-< I~,-< 1 + k r -  11  (1~ - 1), (5.2) 

( k -  1) (k-') (r k -  1) k 
1 <_ R~ ._ ~, (;. -_- i~-~r : r),~," 

Further, all inequalities are sharp. 

(5.3) 

Proof 

For each n, consider the partition of [1, r] given by: 

xi 1 + iAx, z3a: r -  1 = = , i = 0, . . . .  n. 
n 

(5.4) 
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n - 1  

Consider Y,, f(xi) 2~c. Because f(x) is continuous and has integral equal to 
i = 0  

1 over [1,r], it is clear that 

~, f(xi) Ax = v,, tl,-'*l as n---*x. (5.5) 
i=O 

Similarly, 
r 

f n, xkf(x)  dx = lim ~ f ( x i )  z ~ .  (5.6) 
n i ~ O  

1 

Let g.(x)  be the pdf defined on the partition {xs} given in (5.4) by 

g.(xi) = f(xi) A x  (5.7) 
N 

Applying Theorem 3 to g. ,  

, C r * - l ~  
Ixk(g,,) < txk(g,) _.< 1 + \ r - 1 / [Ix(g,) - 11. (5.8) 

Taking limits in (5.8) as n---*~ proves (5.2), because Ix~(g,)--*lx~(f) for all 
k. As usual, (5.3) follows from (5.2). Finally, the inequalities are sharp 
because the discrete example given in the proof of Theorem 2 can be ap- 
proximated to any degree of accuracy by continuous pdf's. [ ]  

Corollary 

Let f(x) be given as in Theorem 4 and let Mx(t) denote the moment- 
generating function of x, 

r 

Mx(t) = J e~ f(x) dx. (5.9) 
1 

Then, 

e ~" < Mx(t) <- e ~ + ~ (e ~ - et). (5.10) 
r -  1 

Further the inequalities in (5.10) are sharp. 



STATISTICAL ANALYSIS OF BANDED DATA 403 

Proof 

The inequalities in (5.10) follow directly from (5.2) and (4.37). Also, the 
fact that they are sharp follows by considering continuous approximations 
to the example given in the proof of the Corollary to Theorem 3. [ ]  

It was noted in Section IV that the distribution with maximal ratio of p,~, 
to Ok will have I~ given as in (4.9). It may be of interest to determine the 
mean of the distribution for which the interval developed for I~ is greatest. 
A calculation shows that 

[,k_ 1-1 
i x =  k(-r 1)J " (5.11) 

Clearly, IX is an unbounded increasing function of r for each k. Also, for 
fixed r, IX is an increasing function of k with limit equal to r. The value of 
this limit can be determined by applying L'Hospital's rule [2] to lnix as a 
function of k, k~®.  
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DISCUSSION OF PRECEDING PAPER 

ELIAS S.W. SHIU: 

I wish to supplement this paper with an alternative proof for Formulas 
(4.6), (4.26), (4.36), (5.2), and (5.10). Let ~ be a continuous function on 
the interval [a, b]. Assume that, over the interval [a, b], the graph of dO is 
below the straight line joining the points (a, ~(a)) and (b, ~(b)); that is, 

~b(x) < qb(a) + (x - a)[qb(b) - d~(a)]/(b - a) ,  x • [a, b].  (D.1) 

Then, for each random variable X, we have 

E[d~(X)] _< ~b(a) + [E(X) - a][d~(b) - d~(a)]/(b - a) .  (D.2) 

Formula (D.1) holds for all convex functions + on [a, b]. Now, for k>_l, 
the function 

, l , (x)  = x 

is a convex function on each positive interval. With [a, b] = [1, r], formula 
(D.2) becomes 

E ( ~ )  < 1 + [E(X) - 1](r ~ - 1)/(r - 1). (D.3) 

For each fixed t, the function 

, ( x )  = e 

is convex; hence we have 

Mx(t )  <- e' + [E(X) - l](e" - e')/(r - 1). 

If + is a convex function, then either (i) (D.1) is an equality, that is, 
is a linear function, or (ii) (D.1) is a strict inequality except for the endpoints 
a and b. Hence for a nonlinear convex function 6 ,  (D.2) is an equality if 
and only if 

e r ( X  = a) + e r ( X  = b) = 1. 

Inequality (D.3) gives an upper bound for E(X ~) in terms orE(x):  Perhaps, 
lower bounds for E(X ~) are also of interest. Let me now repeat some results 
given in [4]. It can be proved ([1, section 16], [3, p. 455]) that, for each 
positive random variable X, 

[E(X~)] 1/~ < [E(Xt)] TM, - ® -< s -< t < oo 

405 
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Hence 

[E(X~)] k/~ < E(Xk), 0 < s <- k. (D.4) 

A special case of (D.4) is 

[E(JO] k _< E(Xk), 1 < k. (D.5) 

It is possible to obtain inequalities sharper than (D.5). Given b > a > 0  and 
p>-l, we have 

b p = [a + (b - a)]" 

->a" + (b - a)",  

which is sharper than bP>-a p. Tong ([5], [6, Lemma 2.3.1]) has applied this 
observation and (D.4) to obtain a lower bound for E(X k) in terms of the 
mean and variance of X. For a non-negative random variable X and a real 
number k_>2, 

e(x ) + E { [ x  - e(x) ]  

>_ [Vat(X)] 

We can also obtain a lower bound for E(X ~) by means of #5.45 on page 
158 of [2]. For a random variable Y, a non-negative Borel function ,q and 
a positive number c, 

E[~I(Y)] -> cPr[.q(Y)>_c]. 

Consider ,q(y) = [y[k. Then we have 

E(IYI k) _> cPr([~ k >- c) = cPr(I ~ > cUk), 

which is called Markov's inequality or Tchebycheff's inequality. 
The inequalities in the paper motivate the following question. Given a 

function ~ defined on [a, b], is there a systematic way to construct functions 
such that 

+(a) = ~(a), (D.6) 

~b(b) = 0(b) (D.7) 

and either 

+(x) < qJ(x) for all x e (a, b) (D.8) 
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or  

d~(x) > ~(x) for all x ¢ (a, b)? (D.9) 

Let h be a function defined on [a, b] with h(b)--bh(a). Then the function 

+(x) = ~b(a) + {[~b(b) - d~(a)]/[h(b) - h(a)]}[h(x) - h(a)] 

satisfies (D.6) and (D.7). Consider the difference between the functions 
and ~, 

d(x) = ~b(x) - ~(x), x e [a, b]. 

We seek conditions on + and h such that either 

d(x) < 0 for all x E (a, b) (D.10) 

or 

d(x) > 0 for all x E (a, b). (D.11) 

Assume that d is differentiable. Since d ( a ) = d ( b ) = 0 ,  (D.10) holds if d 
has exactly one minimum in (a, b), and (D.11) holds if d has exactly one 
maximum in (a, b). The equation 

d'(,v) = 0 (D.12) 

is equivalent to 
qb'(y) = {[qb(b) - +(a)]/[h(b) - h(a)]}h'(y). 

Assume that +'(x) is never zero; that is, d~ is a strictly increasing or de- 
creasing function. Then (D.12) is equivalent to 

h'(y)/d~'fy) = [h(a) - h(a)]/[+(b) - ~b(a)]. (D.13) 

Note thaty  does not appear in the right-hand side of (D.13). If the function 
h'(x)/d~'(x) is a strictly increasing or decreasing function, then y is unique. 

For an application of the analysis above, consider the functions +(x) = x  k 
and h(x )=x  4. The function 

h'fr)/+'(x) = (j/k)xJ -k 

is a strictly decreasing function on [1, r] i f j < k  (it is strictly increasing on 
[i ,  r] i f j> k ) .  Hence we have, f o r j < k ,  

x ~ - I  x 4 - 1  
rk-----~ < rY---'~ for all x ~ (a, b). 
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We conclude this discussion with two applications in life contingencies 
[2, p. 290, #9.31.c] and [2, p. 532, #18.21.c]. Observe that the functions 
d~'(x)/[d~(b)-cb(a)] and h'(x)/[h(b)-h(a)] are weight functions. It follows 
from an integration by parts that 
b 

L,l,(b) - 4,(a) 
a 

h'(~) 1 , .  
h(b) ~- -h(a) J gLx) dr, 

b 

L6(b) -- ~b(a) 
a 

1 h(b) - h(a)J dg(x). (D.14) 

If g is a monotonic function, then the differential dg(x) is of one sign. For 
#9.31, consider 

+'(t) = . v ~  

and 

h'(O = ,p~'. 
Then h'(t)NO'(t) is a decreasing function. It follows from (D.14) that 

1 t 

For #18.21, consider 

and 

+'(t) = v' ,p= 

h'(t) = d~'(t)e -A', 

where A is a change in the force of interest. The desired result follows from 
(D.14). 

I thank Dr. Reitano for a thought-provoking paper. 
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ERIC S. SEAH: 

In the paper, the author provides sharp upper bounds i~, given that t~ is 
available; see Formulas (4.26) and (5.2). In this note, we show that, if we 
have additional information, namely, the variance 0 .2 , still better upper an 
be obtained. 

Let h(x) =x k, k being an integer ->2, and l(x) be the linear function joining 
the points (1, h(1)) and (r, h(r)). The idea is to find a quadratic function, 
f(x), which passes through the points (1, h(1)) and (r, h(r)) and is "sand- 
wiched" between h(x) and l(x) on [1, r]. If we require f ' ( 1 )=h ' (1 )=k ,  then 

I [ rk-I k]x2+ l [ k ( r + l ) - 2 r k - 1 ]  f(x) 
r ~  1 r - ' 1  r - l J  x 

+ • • (k - 1 ) r -  1 
r i 1 

We now prove that f(x)_>h(x) on [1, r]. Let g(x) =f(x) -h(x). It follows from 
the above that g (1)=g(r )=g ' (1)=O.  We note that, for k=2 ,  there are at 
most two sign changes in the coefficients of g(x), while for k->3, there are 
at most three sign changes. By Descartes' Rule of Signs, g(x) has at most 
two positive real roots when k = 2 and at most three positive real roots when 
k_>3. In the case of k = 2 ,  g(x) is a quadratic function and has exactly two 
real roots: 1 and r. For k->3, g(x) has exactly three real roots: 1, 1, and r. 
It is easy to show that g"(1)->0. Therefore, g(x) must be non-negative on 
[1, r]. 
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It is also easy to check that l(x)>_f(x) on [1, r]. Thus for a random variable 
X bounded between 1 and r, we have h(X)<_f(X)<I(X). Taking expectations 
yields E[h(X)]_<E[f(;0]-<E[/(X)]. Hence, 

~ _ <  k [o ~ + ~ ]  
r - 1  - 1  r -l] 
+ k(r + 1) - 2 

r - -  1 r 

] + . ( k -  1 ) r -  1 
r i 1 

r k - 1 
_~ 1 + ~ ( ~  - 1). 

r - -  1 

We conclude this discussion with the remark that, for all quadratic functions 
re(x) passing through (1, h(1)) and (1, h(r)) such that m(x)~-h(x) on [1, r], 
fix) is the one closest to h(x); that is, m(x)~-f(x) on [1, r]. The proof is not 
difficult, which we leave to the interested readers. 

ESTHER PORTNOY: 

The method of moment spaces is an idea that has been thoroughly explored 
by statisticians (see the additional references at the end of this discussion), 
and it is good to see it brought into the actuarial literature and applied to a 
particular situation. Two separate problems should be distinguished. First is 
the problem of making the most of existing data; second is the question of 
redesigning data-collection (or data-reporting) methods for the future. 

Consider the following numerical example. 

Amount Range ' I 
<$2,0oo I 5 

$2,000-$4,999 I 15 
$5,000-$9,999 23 

$10,(X)0-$24,999 53 
$25,000-$49,999 25 
$50,000-$99,999 10 

$1oo,ooG$5oo,ooo [ 5 

Number of Policies ] Avenge Amount 

$1,380 
$3,627 
$7,791 

$14,708 
$32,152 
$62,990 

$184,220 
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Note that the "under $2,000" band cannot be transformed into the form 
(1,r); fortunately, this is not necessary. Knowing the boundaries ( a , b ) ,  the 
average Ix and the number n for each band, we can give a sharper estimate 
than (2.14), namely, 

1~'2 < a 2 + ( ~  - a ) (a  + b )  - (b - a) 2 s(1 - s) (1) 
n 

Here s is the fractional part of the polarizing parameter 

n ( i x  - a) 
t =  

b - a  

Proof of (1): Among all collections {xl, ..., xn} of n points in (a, b) 
having average Ix, the greatest Ix'2 is attained by the polarizing distribution 
D(t): 

i f o r i  <_n - m - 1 
x i  = + s (b  - a )  for  i = n m 

fo r i  > n  m + 1 

where m = t - s ,  the greatest integer in t. But 

n - i x~ [D( t ) ]  = (n - m  - 1)a 2 + [a + s (b  - a)] 2 + m b  2 

= n ' a  2 + m ( b  2 -  a 2) + 2 a s ( b  - a )  + s 2 ( b  - a )  2 

= n - a  2 + (a + b)[n(ix - a )  - s ( b  - a)] 

+ s ( b  - a)[2a + s ( b  - a)] 
= n ' a  2 + n ( i x -  a ) (a  + b)  - s(1 - s ) (b  - a) 2. 

Thus for any other collection with the same average W, 

Ix~ -< p,'2[D(t)] = a z + (Ix - a ) (a  + b )  - (b  - a) 2 s(1 - s )  Q E D  
n 

Since the last term on the right of  (1) is positive, its omission gives 

Ix'2 < a 2 + (ix - a ) (a  + b); (2) 

equality will hold only for the polarizing distribution with s = 0 or 1, or in 
the limit as n ~ ® .  Besides providing a sharper estimate than (2.14), the 
proof given here for (1) avoids the questionable argument following (2.19), 
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where one must express the right side of (2.19) in terms of Ix and then 
maximize, not vice versa. 

For the example given, we have the following estimates from (1) com- 
pared to (2.14): 

R.S. o f ( l )  R.S. of (2.14) 
Amount Rarlgc s (000 omitted) (000 omitted) 

< $2,000 
$2,000-$4,999 
$5,000-$9,999 

$10,000-$24,999 
$25,000-$49,999 
$50,000-$99,999 

$100,000-$500,000 

0.45 
0.135 
0.839 
0.635 
0.152 
0.598 

2,562 
15,319 
66,718 

263,796 
1,158,178 
4,388,401 

0.053 58,933,042 

2,760 
15,389 
66,865 

264,780 
1,161,400 
4,448,500 

60,532,000 

The two upper bounds thus given for E x 2 are 3.833 x 1011 and 3.920 x 1011. 
The corresponding bounds for s 2 = 1In E x2i- (1In E x,) 2 are 1.587 x 109 and 
2.267 x 109, amounting to about a 20 percent difference in estimates of the 
standard deviation. Of course, the numbers in this example are quite small; 
if the numbers in each band are of the order of a few hundred or more, the 
correction term will be negligible unless the bands are very wide. 

A caution about using (1) has to do with round-off error in calculating 
the fractional part, s, of t. It would be better if E xi were reported, rather 
than 1/n Exi; if only the average is given, it might be prudent to experiment 
a bit to see the possible range ors.  For instance, in the $5,000-$9,999 band, 
we have reported an average of $7,791 on 23 policies; the sum of values 
could range between $179,182 and $179,204 so 12.8364_<t< 12.8409. Thus 
the correction term 

( b - a )  2 s(1 - s )  
n 

is between 145,421 and 148,734. A more conservative upper bound for 
Izh might be 66,720,000. Other situations might require more substantial 
modifications. 

For the second objective, designing for future data collection, one cannot 
know n and s in advance, and so (2.14)becomes the best universal bound. 
However, rather than adjusting bandwidths (and possibly causing problems 
for those who collect the data and others who use them), it would seem 
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more natural to revise the collection procedure to include and report 1/n Y~ 
x] for each band, thus leading to an exact value rather than estimate for the 
standard deviation. 
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PATRICK L. BROCKETI'* AND SAMUEL H. COX. 

We wish to point out an alternative method of bounding higher-order 
moments and moment generating functions that is capable of extension far 
beyond the setting of Dr. Reitano's paper. These methods have been dis- 
cussed and applied to actuarial science problems [2]-[8]. In particular, from 
these papers it follows that the inequalities (4.26), (4.36), (5.2) and (5.10) 
are valid for all distributions concentrated on [1, r] having a specified mean 
~, and in fact, there is no need to assume that the distribution is either 
discrete or continuous; a single technique applies for all distributions. More- 
over, the situations Dr. Reitano develops earlier in his paper are also special 
cases of the results given in [2]-[8]. 

The principal result given in the above publications that is applicable to 
Dr. Reitano's work is given below. We have used this result (for the case 
that the function h whose expectation is to be bounded is twice differentiable) 
in [2]. It is proven in the generality given here in [3] and [4] using techniques 
of Kemperman [8]. Chang [6] also established similar results. 

*Dr. Brockett, not a member of the Society, is the Joseph H. Blades Professor of Insurance at 
the University of Texas at Austin. 
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Let X denote a random variable concentrated on [a, b] with a known mean 
p.. If h is a continuous function that is convex over [a, b], then 

h(ix) -< E[h(X)] < h(a)p + h(b)(1 - p) 

b - i x  
wherep = b - a" 

The definition of convex used in the above setting is geometric: For each 
pair of points P =  [x, h(x)] and Q = Lv, hfy)], the line joining P to Q lies 
entirely above the portion of the graph of h which joins P to Q. For example, 
functions such as h(x)=x ~, k_>l or h(x)=e °' for a fixed real number t are 
convex functions frequently used in actuarial science. The proof of the above 
result is also geometrically apparent: To make the expectation of a convex 
function as large as possible, move as much mass as possible to the extreme 
end points a and b, while to make the expectation as small as possible, move 
as much mass as possible towards the center Ix. The mean and total mass 
constraints then uniquely determine the exact extremal distributions as given 
above. 

To obtain (4.26) and (5.2), set a = 1, b = r  and h(x) = ~ .  Then h(Ix) = Ixk, 
E[h(X)] = Ix;,, h(a)= 1, h(b) =r  k andp = ( r -  Ix)/(r- 1). Therefore, we obtain 
(4.26) and (5.2): 

kl, k < Ix,k < r - -  p,  q .  ~ - -  1 ~ I~ -- 1 
r - -  1 r 1 r = 1 + ~ r _  1 (rk -- 1). 

To obtain (4.35) and (5.10), set a- -1 ,  b = r  and h(x)=e =. In this situation 
we have h(Ix)=e '~', E[h(X)] =Mx(t), h(a) =e',  h(b) = ~  andp = r - D / r - 1 ,  so 
that we obtain (4.36) and (5.10): 

r - I x  ~ I x -  1 I x -  i 
e ' ~ < - M x ( t ) < e  + = e' + ~ ( ~ -  e'). 

r - 1  r - 1  r - 1  

This technique was used in [2] to obtain the same bounds on the moment 
generating function and was extended much further than the one moment 
case needed to establish Dr. Reitano's results. It is possible, for example, 
to obtain both upper and lower "best bounds" for the moments and moment 
generating function in the situation in which more than just the mean or 
even just the mean and variance are known. Unimodality constraints and 
higher-order moment knowledge can also be incorporated into the calcula- 
tions with equal facility (and with corresponding closed form solutions). 
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These results were given in [2] and [3]. There is also a large literature on 
this, and more general related problems involving moments in actuarial sci- 
ence, to be found in the European actuarial literature. These results are 
summarized in [5] and [7]. 

As a final comment, we note that the original motivation for Dr. Reitano's 
investigation was to estimate expectations (in his case the variance) when 
the data were presented already grouped with only the means of the indi- 
vidual subintervals known. Instead of estimating the expectation directly, he 
found bounds in terms of the interval limits and the given mean. A general 
alternative solution to the original problem is available, however, using 
information theoretic methods. These methods are detailed in [1] and are 
sufficiently general to include the situation in which means, or medians, or 
percentiles, or any of a multitude of other information is known about the 
banded data. Moreover, the estimates are truly estimates in the statistical 
sense (rather than bounds) with known statistical properties and asymptotic 
distributions. In addition, unimodality can be incorporated without substan- 
tially complicating the problem and the estimates can be readily computed 
by recourse to an unconstrained convex programming problem. All these 
results can be established by using the techniques outlined in [1]. 
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(AUTHOR'S REVIEW OF DISCUSSION) 

ROBERT R. REITANO: 

I would like to thank Drs. Shiu, Seah, Portnoy, Brockett, and Cox for 
their thought-provoking discussions. 

Dr. Shiu provides an array of extensions of the inequalities in my paper. 
Using only the convexity property of the power and exponential functions, 
he easily and elegantly develops the upper bounds for ~ (x), k > l ,  and for 
Mx(t ). My proof of Theorem 1, being more constructive, simply fills in some 
of the details to assure sharpness for finite collections of points or distri- 
butions of rational range where Pr(a)+Pr(b)--/: 1, and perhaps gives more 
insight via polarized distributions, to the kinds of distributions that need to 
be considered. However, Dr. Shiu's proof is certainly sufficient for the actual 
result desired. 

By introducing information on the variance, he also provides a better lower 
bound for Iz~ (x) than that produced with ~ alone. Though not directly usable 
in my paper's applications, in which variance was assumed unknown, it is 
clear that in other contexts, the better bound would be preferred. Better yet, 
however, are the sharp lower bounds of Brockett and Cox [1], [2], if both 

and o ~ are assumed known. 
Dr. Shiu also reminds us of Tchebycheff's inequality, which provides 

lower bounds for la,~, (x) based on information about F(x). Such information, 
however, is often unknown. In addition, the sharpness of this type of esti- 
mate, vis-a-vis the estimate produced with tz, is difficult to predict. 

Finally, by developing a general approach to approximating a given func- 
tion with another which majorizes it, Dr. Shiu produces an interesting gen- 
eralization of (2.14) of my paper; namely, for k>j: 

r * -  1 ~, 
_< 1 + ( ; ( x )  - 1), 

rj 1 

and also utilizes this methodology in a life contingencies context. 
Dr. Seah, again assuming information on variance, provides a better upper 

bound for ~ ,  (x) than that possible with ~ alone. His methodology is to find 
a closest fitting quadratic function that majorizes x k, k ->2 on [1, r]. His 
approach is similar to the one used in Reitano [3], where a best-fitting 
majorant quadratic approximation to (1 +i) 1-s was sought. 
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Although it improves my result, which reflects ~ alone, this upper bound 
is not as informative as possible, given the additional information. As ref- 
erenced above, Brockett and Cox [1], [2] also provide sharp upper bounds 
to V.~ (x), when I~ and o 2 are assumed known. 

Dr. Portnoy wonders if'i haven't given up too much in Theorem 1 by not 
using my Equation (2.19) as the upper bound for ~;, (x), which she has 
reduced to her Equation (1). Certainly I have given up something to avoid 
the extra term involving s, as well as the practical problem of estimating s 
that she notes. However, it is usually the case that her upper bound will be 
very close to mine. 

First, Dr. Portnoy's example, whereby her estimate of the standard de- 
viation differed by 20 percent from mine, is in error by an order of mag- 
nitude. I discovered this as a byproduct of the analysis developed below, 
then checked her calculations. The mistake occurs in the calculation of s 2, 
using her Formula (1). The correct answer is 2.202 x 109, not 1.587 x 10 9, 
for a relative difference of 2.8 percent compared to my estimate. The corre- 
sponding estimates for the standard deviations then differ by about 1.4 per- 
cent, not 20 percent. 

On the other hand, it is possible to develop examples for which the relative 
error is greater. Fortunately, the analysis below shows that this will rarely 
happen in practice. 

To this end, let s2(s) equal Dr. Portnoy's estimate of the variance using 
her Equation (1), and s2(0) equal that produced by my Equation (2.26), or 
equivalently, by her formula with s = 0. One then obtains: 

_ _ _  = ( r -  1) 2 s2(s) s(1-s_.__.~) x (D.1) 
1 : ( 0 )  n 1) ( r -  

Using my Equation (2.12), (D.1) reduces to: 

s2(s) s ( 1 - s )  x 1 (D.2) 
1 s2(0) = n t/n(1 -t /n)" 

which makes it clear that the relative error is independent of the size of 
amount band r. Because 0-<s<l,  an upper bound for (D.2) is given by: 

s:(s) 1 1 
1 - -< - x (D.3)  

4n p(1 - p ) '  

where p=t /n  equals the percentile of ~ within the range [1, r]. 
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From (D.3), it is clear that for f ixedp, the relative discrepancy decreases 
quickly with n. Using a conditioning argument, it can be shown that the 
relative discrepancy for the portfolio is less than the weighted average of 
individual band discrepancies, which by (D.3) could be no more than: 23, 
7, 4, 2, 5, 13, and 30 percent, respectively. The weights used reflect the nj 
for each band as well as ~(0). Because Dr. Portnoy's portfolio discrepancy 
for s 2 was 30 percent [1.587 v. 2.267], it was clear that it must have been 
in error as noted above. 

Of course, (D.3) readily provides information on the relative disparity in 
standard deviation estimates. For example, if 0.1<_p~0.9, the relative dis- 
crepancy will be less than 1 percent for n~140. Similarly, n_>265 will 
suffice for 0.05<p_<0.95. 

For amount bands for which p is very close to 0 or 1, (D.3) provides a 
poor upper bound. For example, if t < 1, so s = t and p = s/n < l/n, we obtain 
from (D.2): 

s ~ ( s )  n - 1 s 
1 s2(O ) = 1 - ~ n  x ~l_s/n. (D.4) 

Consequently, for fixed n, the relative error can approach 100 percent as p 
=sin approaches 0; that is, for Is very close to 1, the lower bound of the 
interval. In practice, however, this result may be of little concern. A similar. 
analysis holds forp near 1, or p. near the upper bound r. However, for such 
extreme cases of Is, Dr. Portnoy's Formula (1) is certainly easy to apply. 

Dr. Portnoy seems not to follow the logic of my proof of Theorem 1. 
After showing that Ix; [D(t)] is a piecewise convex quadratic function of t, 
which equals the linear function, 1 + ( r+  1) {p,[D(t)] - 1}, at the partitioning 
t values of 0 . . . . .  n, the conclusion is straightforward. 

Finally, I agree with Dr. Portnoy's preference for calculating s 2 exactly, 
rather than estimating it based on banded data, though at the time of my 
original analysis, this was not an option. However, I disagree that a good 
banding convention would cause problems for contributors to mortality stud- 
ies. For example, starting from $10,000, the following bands produce r 
values close enough to 2.48 that a 5 percent relative error would be virtually 
assured: 
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10-24,999 
25-49,999 
50-99,999 

100-249,999 
250-499,999 
50O-999,999 

1,000-2,499,999, etc. 

Clearly, this banding convention is generally conservative and fits in well 
with the amount bands many insurers use as a basis for pricing. 

Drs. Brockett and Cox begin their discussion with the observation that 
"'These methods have been discussed and applied to actuarial science prob- 
lems." Indeed, the cited works follow the 17th Actuarial Research Confer- 
ence in 1982 where I presented the original version of my research (see the 
Acknowledgment to the current paper, p. 403), as well the publication of 
that paper in ARCH [4]. This work has subsequently been generalized. 

Drs. Brockett and COx use the convexity property of the power and ex- 
ponential functions to develop sharp estimates for V,;, (x), as did Dr. Shiu, 
and note that corresponding sharp estimates are also possible when additional 
information besides V, is known, for example, when o 2 is known as noted 
above. 

For the applications developed in my paper, however, in which policy 
data are assumed to be banded, their generalizations may be of theoretical 
interest only. Indeed, presented with such data, one can hardly imagine 
having information on the variance, higher moments, medians, or percen- 
tiles, let alone knowledge as to whether or not the underlying distribution is 
unimodal. 

In closing, I would like to again thank Drs. Shiu, Seah, Portnoy, Brockett, 
and Cox for their stimulating discussions and for the additional references 
to related work. 
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