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ABSTRACT 

The purpose of this paper is to provide a unified theory for the evaluation 
of underwriting requirements where this evaluation is based on the mea- 
surement of the levels of mortality costs associated with such require- 
ments. The two underwriting models presented will be used to develop 
identities between the observed differentials in the screening potential of 
the requirements under study and the expected differentials in the mor- 
tality costs associated with the various resultant issue classes. The dis- 
tinguishing feature between the two models is the assumption regarding 
historical mortality experience data. One model assumes the existence of 
such data for each of the resultant issue classes and, accordingly, is ap- 
plicable primarily to the evaluation of a medical examination. The other 
model assumes the existence of historical mortality experience data only 
for the combined issue block, and is generally applicable to the evaluation 
of other types of underwriting requirements. The practical considerations 
involved in the application of each model are explored in detail. 

I. INTRODUCTION 

Historically, two approaches to the problem of evaluating an under- 
writing requirement have evolved, although they are typically applied to 
different types of requirements. One approach, herein called the actuarial 
approach, has been utilized primarily for the determination of nonmedical 
issue limits. It defines the value of a medical examination as the difference 
between the present value of the mortality costs generated by nonmedical 
and medical mortality experience, where the calculations are performed 
on a net-amount-at-risk basis. The other, herein called the underwriting 
approach, was introduced by Charles A. Ormsby [1] in 1963 and has been 
applied primarily to such underwriting tools as inspection reports (IRs), 
attending physician statements (APSs), and electrocardiograms (EKGs). 
This approach defines the value of such an underwriting tool as the present 
value of the extra mortality costs (i.e,, costs over and above what would 
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be expected of average standard issues) that are saved by removing certain 
lives from the standard issue class, where, as above, the calculation is on 
a net-amount-at-risk basis. 

Since both methodologies measure the influence of an underwriting tool 
on mortality costs, they are intimately related. The purpose of this article 
is to explore such relationships and present a unified theory for the mor- 
tality cost valuation of an underwriting requirement. 

In Section 1I, these two methods are surveyed in more detail with 
particular attention to their respective advantages and disadvantages. In 
Section Ill, identities will be developed between several mortality cost 
differentials, and the theoretical relationship between the above two meth- 
ods will be made apparent. Section III is separated into two parts, the 
first developing a model that is more suitable for the evaluation of a 
medical examination, and the second generalizing the results to other 
underwriting requirements for which the resultant mortality experience 
is unknown, 

Each of these two subsections will contain a discussion of the validity 
of the assumptions underlying the given model, as well as applications 
for its use. 

Finally, the appendix contains a mathematical analysis of several prop- 
erties of a mortality cost function. 

II. O V E R V I E W  OF M E T H O D O L O G I E S  

A.  The A c t u a r i a l  A p p r o a c h  

This is a retrospective approach that attempts to measure the value of  
a medical examination by the indirect method of comparing medical with 
nonmedical standard mortality experience.  The difference is assumed to 
be the result of underwriting with a medical examination. The comparison 
is made with the help of a mortality cost function, M, defined for a given 
plan, issue age, and sex as the present value of mortality costs per $1,000 
of issue on a net-amount-at-risk basis. Specifically, 

t l  I 

M = ~'~ ( N A R ) , ~ I v  '*L" ,Pl,lqt,l*,,  (1) 
t 0 

where v, ,Pw, and qm+, are standard notation, with ,p~,; reflecting the 
appropriate lapse experience,  and ( N A R ) ,  + ~ is the approximate net amount 
at risk during policy year t + I per $1,000 insured. The net amount  at 
risk could be defined in terms of the policy reserve or the cash value and 
may provide for the refund of  premium in the year of  death. The formula 
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for M could be refined to reflect an average-policy-size assumption,  or 
premium modes  other than annual, although the effect on M would be 
small. 

Each calculation is performed twice, once utilizing actual standard 
nonmedical experience to produce M" (where the superscript H denotes 
the application medical history questionnaire),  and once using actual stan- 
dard medical experience to produce M E (where the superscript E denotes 
the medical examination).  The mortality differential, VM, is then defined 
by 

VM = M" - M E . (2) 

For a given issue age, VM is calculated for several representat ive plans, 
and a range is produced.  If sufficient issue data are available, a value can 
be determined that reflects the plan distribution near the current nonmed- 
ical limit. In the absence of other factors,  the values of  VM should equal 
the savings in mortality costs,  per $1,000 of issue, due to the medical 
examination.  Equivalently, these values equal the additional mortali ty 
costs that an insurer should incur, per $1,000 of  issue, if the nonmedical 
limits are increased. 

Before setting the ordering l imits/ 'or  a medical examination,  it is nec- 
essary to discuss those pertinent factors  that are not reflected in the 
calculation of  VM. In decreasing order of  importance,  these factors are 
the socioeconomic factor, the underwriting factor, the omission of values,  
and the statistical basis of the data. 

1. Socioeconomir factor. It is well known that mortality experience improves 
with improved socioeconomic conditions, whether these conditions are mea- 
sured in terms of education, income, or residence. This is partly attributable 
to the greater availability and affordability of medical services for the higher 
socioeconomic classes, and partly to the greater prevalence of occupational 
and environmental hazards in the lower socioeconomic classes. Since insurance 
needs are positively correlated to income, socioeconomic status reflects itself 
in the mortality differential between the medical and nonmedical classes simply 
because smaller policies are more likely to be applied for nonmedically, and 
larger policies medically. This factor will also influence mortality results within 
each of the medical and nonmedical classes. 

2. Underwriting factor. Since routine underwriting requirements depend on the 
amount of coverage involved, large-amount policies are subjected to a greater 
barrage of requirements than smaller policies. For example, larger policies will 
tend to require more sophisticated inspection reports, as well as such things 
as X-rays and electrocardiograms. Hence, the difference in mortality levels 
between the medical and nonmedical groups is affected by the more stringent 



280 MORTALITY COST VALUATION 

underwriting requirements of larger policies, and this will indirectly improve 
the standard experience of the medical applications proportionately more than 
that of the nonmedical applications because of the amount correlation noted 
above. Mortality within each class is also affected by this factor, although more 
so for the medical class. 

3. Omission o f  value. Inherent in the actuarial approach is the assumption that 
the total value of a medical examination can be determined from an analysis 
of how the resulting mortality experience affects the mortality costs associated 
with various base-plan types. This naturally raises concern over the handling 
of policy riders and benefits when the nonmedical limits refer to base plans 
alone. 

Policy riders are easy to accommodate, since they can be added to the 
applicant's total underwriting amount at 100 p percent of the rider amount, 
where 

7M' 
P = VM ; (3) 

4. 

VM is calculated with a net amount at risk valued as if the rider insured the 
applicant, and VM' with the actual net amount at risk. For example, VM' for 
a spouse rider should reflect a net amount at risk equal to the cost to pay up 
the rider. For administrative ease, the value of p could be made independent 
of age and determined so as to reflect the issue distribution, Of course, p = 
1 for applicant riders. The "qnsurance of insurability" benefit can be similarly 
handled where M' in (3) is calculated to reflect purchase rates and the mortality 
cost differentials anticipated from these future policies. It is probably safe to 
ignore the accidental death benefit, since one would not expect any experience 
differential once the socioeconomic factor is taken into account. However, 
disability waiver of premium experience would be expected to vary between 
classes due to antiselection alone, If sufficient experience data could be de- 
veloped, the value of disability costs could be determined and the resulting 
differential added to VM. This is not practical, however, for most companies. 
Statistical basis o f  data. Implicit in the use of VM as a measure of the value 
of a medical examination is the assumption that M ~ and M" are calculated with 
actual standard mortality experience of the medical and nonmedical applicant 
groups, respectively. However, the statistical basis for these experience groups 
is usually one of resultant status, not applicant status. That is, if a nonmedical 
applicant is required to obtain an examination and is subsequently issued stan- 
dard, that applicant is categorized with the medical standard issue group. This 
recategorization would usually be expected to cause some deterioration in the 
nonmedical experience. Also, because of the socioeconomic and underwriting 
factors mentioned above, perhaps some deterioration in the medical experience 
is to be expected as well, although it probably would be slight because of the 
difference in amount distribution between classes. Hence, if it is deemed nec- 
essary to "sweeten"  the nonmedical experience, one could offset the recate- 
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gorization effect simply by assuming that the lives so transferred will experience 
standard medical mortality, and then calculating the implied applicant expe- 
rience as the appropriate weighted average of the two groups of resultant 
experience. 

Another small problem within this category is that the mortality experience 
utilized does not represent the results of the current scale of nonmedical issue 
limits, or those of any single scale. Rather, it represents a durational cross- 
sectioning of the results of all scales utilized in the past. For example, tenth- 
duration experience represents the results of the scale of nonmedical issue 
limits in effect perhaps a dozen or more years ago. Further, even if it is assumed 
that this tenth-duration experience is the same as that which would have oc- 
curred had the current scales always been in effect, it is likely that it will 
greatly overstate the mortality experience that the current issue group will 
produce ten or so years hence. To compensate for this, calculations could be 
performed that reflect projected mortality improvement trends. For example, 
q;~, could be replaced by h ' q l  ,I *, in equation ( 1 ), reflecting an average mortality 
improvement of 100(1 - h) percent per year. Of course, the ,Pt,J terms also 
would be affected, so this calculation is not equivalent to simply increasing 
the interest rate. As is shown in Theorem 2 in the Appendix, the value of M 
so calculated will always be smaller than that calculated with h = 1, and, more 
generally, M is an increasing function of h, Unfortunately, the effect on VM 
is not so easily determined a priori, since one may choose to utilize different 
values of k for the M n and M L calculations. This would seem necessary on the 
basis of the historical trends studied in the Reports Number of the Transactions 
o f  the Society o f  Actuaries. 

The primary advantage of  the actuarial approach is that the calculated 
value of VM automatically reflects what will be called the agent-applicant 
antiselection factor. This is the combination of  applicant antiselection, 
which might be defined as the preference of poorer risks to avoid medical 
scrutiny, and a hypothesized tendency of  agents to submit marginal or 
questionable risks below the nonmedical limit rather than slightly above 
it. The proposed motivation for this tendency is that, although the larger, 
medical policy would pay a proportionately higher commission, the prob- 
ability of receiving any commission is smaller because of higher average 
nonissue and not-taken rates on medical applications. Consequently, the 
agent 's  expected commission can be smaller than that for a smaller, 
nonmedical policy. For a specific marginal risk, the above scenario is even 
more compelling, particularly since an agent has a great deal of influence 
on what information is reported on the medical history questionnaire. 

The effect of this antiselection is that, prior to underwriting, propor- 
tionately more individuals below the nonmedical limit than just above that 
limit would be screened out if examinations were given. In other words, 
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the screening potential of a medical examination is greater on the group 
of nonmedical applicants than on the group of medical applicants because 
of the barrier effect that is created by the existence of a nonmedical issue 
limit. Unlike the underwriting approach, the actuarial approach makes no 
assumption about this potential: it only measures the resu l t  of medical as 
opposed to nonmedical underwriting, and antiselection is part of this 
result. 

Finally, then, once VM is calculated from equation (2) and modified to 
reflect the above remarks (perhaps by using the medical experience of 
lower-amount policies to diminish the socioeconomic and underwriting 
factors), ordering limits are set in the following way. Let C~ be the average 
total cost (including clerical and underwriting costs) of the medical ex- 
amination and all supplemental underwriting tools ordered because of 
information on the medical, converted to a paid-for issue basis (i.e., equal 
to the per-application costs, C E, divided by the probability that a medical 
application will become a paid-for issue), and let (-u be a similarly defined 
quantity only with regard to the application medical history. The average 
total mortality and underwriting cost for a medically examined paid-for 
issue of amount A is then A M  E + C~.. Similarly, this average total cost 
for a nonmedical paid-for issue is A M  H + (~". Since it is invariably true 
that M e < M u and ~E > (? .  there is a unique amount, A a, such that below 
A a, nonmedicai underwriting produces a smaller average total cost than 
medical underwriting (the reverse being true above A~), where 

and 

m A = ( 4 )  
V M '  

There is a somewhat dangerous extrapolation here in that it is assumed 
that the values of AC" and VM, calculated on the basis of the current and 
past (for VM) scales of nonmedical limits, will remain valid for the new 
limit A '~. That is, it is assumed that underwriting and mortality cost dif- 
ferentials are intrinsic to, and the result of, medical underwriting, In 
general, the assumption regarding A(' is probably a safe one, although 
that for V M  may be patently false. For example, ifa company "'piggybacks" 
another underwriting requirement at the current nonmedical limit, its in- 
fluence cannot be removed by using lower-amount medical experience for 
M e. Consequently, the estimated VM will overstate the correct value, 
thereby artificially suppressing the value of A a in equation (4). However, 
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VM would be appropriate for the purpose of revising the limit for the 
package, if CE is appropriately redefined. 

B. The Underwri t ing  A p p r o a c h  

This is a prospective approach that attempts to predict the value of an 
underwriting requirement by directly measuring its screening potential on 
the basis of an application-by-application analysis. If two requirements 
are to be compared, it is the marginal screening potential that is of interest. 
Hence, the focus of this technique is on the applications that, because of 
the tool under study, will not be issued as applied--that is, the group of 
applications on which the tool had an effect. Such cases are often labeled 
"effect" cases. The groups over which the actuarial and underwriting 
methods measure value are thus distinct and somewhat complementary, 
since the focus of the actuarial method is on those policies that were 
issued standard. 

The measurement of an underwriting requirement's screening potential 
is accomplished with the use of an extra mortality cost function, K, defined 
for a given effect case, per $1,000 of coverage, by 

n I 

K = ~ (NAR) ,+,v  '+''2 ,p~lAqt,l+, , (5) 
t - o  

where ,p~l is the probability of survival assuming substandard experience 
(q') appropriate for the rating and a suitable lapse rate, and 

Aqt~l+, = qlxl+, - qtxJ., ,  

q represents standard experience. The value of K, therefore, is an ap- 
proximation to the extra mortality costs that the company would expect 
to incur, per $1,000, had the tool not been ordered and the applicant issued 
standard. It is an approximation because it would be more appropriate 
to use K', where 

K '  = M(q ' )  - M ( q ) ,  (6) 

and M is defined in equation (1). 
It is straightforward to check that K' ~< K whenever p~x~÷, ~< Pt~÷,, and 

this can be expected to be true even if substandard lapse experience is 
somewhat better than that of standard issue. In the absence of other 
factors, therefore, K usually will overstate the value of a tool and lead 
to somewhat conservative underwriting limits. 



284 MORTALITY COST VALUATION 

In the general case where two underwriting requirements are being 
compared,  calculations are performed on both groups of  effect cases, and 
the total value for each group is converted to a per $1,000 basis. These 
values then are multiplied by the respective probabilities that an appli- 
cation containing the requirement will become an effect case, thereby 
producing average values per $1,000 applied. 

For example,  if medical examinations are to be valued with this ap- 
proach, the average values per $1,000 applied could be denoted by K L r  ~ 

and K H r  H, where r is the probability of becoming an effect case; the 
superscript H denotes the medical history questionnaire, and the super- 
script E denotes the medical examination. Hence,  since K E r  E represents 
the average mortality savings provided by a medical examination,  and 
K H r  H the corresponding amount for a nonmedical application, A K r  = K E r  E 

- K ' r  H will represent,  in the absence of  other  factors, the actual mortality 
savings attributable to medical underwriting, per $1,000 applied. Equiv- 
alently, this value equals the additional mortality costs that an insurer 
should incur, per $1,000, if the nonmedical limits are increased. Although 
the value of  K r  could have been obtained directly by dividing the total 
value of  extra mortality costs by the total amount applied, there are three 
advantages to determining K and r separately. 

First, since the per $1,000 applied value, K r ,  is based on a sample of 
applications, it is subject to statistical variation. Separating this value into 
two intuitively appealing quantities, K and r, simplifies the modification 
of sample data to reflect prior experience and intuition, as well as enabling 
a more meaningful analysis of trends. That is, a trend in the value of K r  

can be better understood in terms of its implications for the underwriting 
process if it can be linked to trends in K or r separately. 

Second,  although r theoretically should be calculated on an amount 
basis, it usually can be defined on an application basis because often there 
is no statistically significant difference between the average policy size 
of the sample and that for the effect cases. That being so, r theoretically 
can be defined on either basis. However ,  its value on an application basis 
is preferred,  since, as a binomial variable, it is more stable and lends itself 
more easily to statistical analysis. 

Finally, identities developed in the next section will require the value 
of  r. 

Before determining the ordering limits for an underwriting tool, it is 
necessary to discuss the following factors, which affect the calculation 
and interpretation of the marginal mortality savings. 

1. The value of K depends on both the availability of an appropriate mortality 
standard (q) and the ability to predict mortality levels of effect cases (q') 
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accurately .  The  va lue  of  q for  m a n y  appl ica t ion c lasses  will have  to be ap- 
p rox ima ted ,  s ince  it is usually u n k n o w n .  Predic t ing  the  potent ia l  mor ta l i ty  
exper i ence  of  app l ican t s  whose  appl ica t ions  are incomple te  or  have  been  de- 
cl ined is a lso a p rob lem.  

2. F u n d a m e n t a l  to the conc lus ion  that  A K r  = K r r  r - KXr  x r ep resen t s  the  margina l  
morta l i ty  savings o f  tool Y ove r  tool X is the a s s u m p t i o n  that  the two groups  
upon which  these  s ta t is t ics  are based  are identical  in t e rms  of the  sc reen ing  
potent ia l  o f  Y. This  is because  it is implici t  in the  a b o v e  analys is  tha t  K ~ r  r 

r ep resen t s  the value  of  Y on the X-class .  But  this may  not  be  the case ,  because  
of  the agen t -app l i ca t ion  an t i se lec t ion  fac tor  m e n t i o n e d  earlier. 

As this  is a fairly subt le  point ,  cons ide r  the fol lowing hypothe t ica l  example .  
A s s u m e  that  tools X and  Y p roduce  a s imilar  d is t r ibut ion  of effect cases  by 
final unde rwr i t i ng  c lass  relat ive to the  appropr ia te  s t andard ,  so tha t  a calcu-  
lat ion p roduces  K x = K ~. A s s u m e  also tha t  X is only ha l f  as likely to d i scove r  
a ra tab le  i m p a i r m e n t  as Y, and  c o n s e q u e n t l y  a " ' ba r r i e r  e f fec t "  is c rea ted ,  
resul t ing in twice  as m a n y  impai red  r isks be ing  submi t t ed  below the  o rder ing  
limit, A, as above  it. Hence ,  it is o b s e r v e d  tha t  r x = r Y and the  margina l  
morta l i ty  sav ings  due  to Y is p rospec t ive ly  d e t e r m i n e d  as A K r  = 0. Conse-  
quently,  the  limit is inc reased  to 2A. Of  course ,  twice as many  impaired r isks 
will now be  submi t t ed  be low 2A as above  i t - - a  con t inua t ion  of  what  occu r r ed  
when  the limit was A. Ret rospec t ive ly ,  then ,  the  r e tu rn  in the a m o u n t  range  
A - 2 A  is K X r  .~ for X bu t  w o u l d  be 2 K ~ r  ~ for  Y. Hence ,  the real value of  Y in 
this  range ,  which  mus t  be ca lcu la ted  re t rospec t ive ly ,  was  2 K r p "  - K X r  x = 

K r r  r. 

This  a n o m a l o u s  s i tua t ion  has  no th ing  to do  with the simplifying a s sumpt ion  
that  A K r  = 0, s ince  it will a lways  occu r  if Y has  a g rea te r  screening  po ten t ia l  
on the  X-group  than  on  the  Y-group. The  d i f ference  b e t w e e n  the  r e t rospec t ive  
and  p rospec t ive  va lua t ions ,  K r r L  is a measu re  of  the  p reven t ive  value  of  Y. 
Hence ,  for  ce r ta in  unde rwr i t i ng  r equ i r emen t s ,  such  as a medical  examina t ion ,  
tha t  invi te  an t i se lec t ion ,  the  ca lcu la ted  va lue  of  A K r  will be  an u n d e r s t a t e m e n t  
of  what  is in fact  the  case .  

3. As can  be  guessed ,  K is a highly volat i le  stat ist ic ,  even  u n d e r  the a s s u m p t i o n  
that  the p rob l em of  mor ta l i ty  s t anda rds  could be reso lved .  This  is because  its 
value is inf luenced by  the  s amp le ' s  d i s t r ibu t ion  o f  effect  cases  by s u b s t a n d a r d  
class ,  a m o u n t  appl ied,  sex,  and  policy type. For  a g iven  age group with an  
expec t ed  effect  p robab i l i ty  of  0.05, for  example ,  one would need  to sc reen  
about  2,000 app l ica t ions  j u s t  to locate 100 effect  cases ,  and this imposes  a 
pract ical  l imita t ion to conf idence .  For  many  appl ica t ions ,  therefore ,  it may  be 
advan t ageous  to use  the  effect  cases  to cons t ruc t  an  explici t  model  for  the i r  
d is t r ibut ion  by  s u b s t a n d a r d  class,  as well as the d e p e n d e n c e  of  average  policy 
size on s u b s t a n d a r d  c lass ,  if such  a d e p e n d e n c e  is o b s e r v e d .  One  can  then  
de te rmine  the value  of  K on  the basis  of  this model ,  a s suming  the appropr ia te  
sex/plan d is t r ibut ion .  

4. Since the unde rwr i t i ng  m e t hod ,  as well as the ac tuar ia l  me thod ,  a t t empts  to 
identify the  resul ts  of  the  ideal s tudy where  the same appl ica t ion group  is 
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5. 

subjected to two underwriting scenarios and the results compared, it is im- 
portant that such characteristics as distribution by sex and plan be similar for 
the two groups actually studied. This is not a problem, of course, in evaluating 
the use, as opposed to the nonuse, of a given tool, since only one application 
group would then be analyzed. 
The value of r, and perhaps that of K, will depend on how one treats effect 
cases identified by the tool under study as well as some other tool independently 
required, that is, multiple-effect cases. In a way, this can be used to advantage 
by calculating A K r ,  the marginal mortality savings, under the two obvious 
extreme treatments and producing a range of values. 

The primary advantage of  the underwriting method is that it provides 
a method of  estimating the value of the various underwriting requirements 
to which the actuarial method cannot be applied because the values of 
M x and M r are unknown. This method is also far more sensitive to changes 
in value caused by changes in the amount or import of the information 
obtained, such changes not being reflected in the issue experience for 
several years. Also, this approach allows for the proper handling of the 
other underwriting requirements that are not under study, although, as 
will be seen later, ignoring these tools is not the solution. 

Finally, then, once the above data have been collected and "massaged,"  
ordering limits can be set, based on one of two philosophies. If under- 
writing is viewed as an investment of  C for a return of  K r ,  the average 
underwriting return (or loss, if negative) provided by tool Y for an appli- 
cation of amount A is A K ~ r  r - C Y. Similarly, the average return provided 
by tool X is A K X r  x - C ~'. Similarly, the average return provided by tool 
X is A K X r  x - C x .  Under the assumption that Y is the superior tool, one 
invariably has that C ~' > C x and K Y r  Y > K X r  x .  This implies that there is 
a unique amount,  A ~', such that below A U, tool X maximizes the return 
(or minimizes the loss) on average, the reverse being true above A U, where 

AC 
At" = _ (7) 

A K r  ' 

and A C  = C r - C x , A K r  = K r r  r - K X r  x .  

Alternatively, if minimizing total mortality and underwriting costs on 
a paid-for issue basis is the criterion, as was the case for the actuarial 
method, this total cost for a policy of  amount A on which tool X is used 
can only be improved by the use of tool Y if 

~ ' r  _ (~x <~ A ( K r r  ~' _ K X r Y )  . 
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Consequently, the ordering limit under this criterion, d u  satisfies 

AC 
,4" = aKr"  (8) 

Since a superior underwriting tool usually carries with it a smaller prob- 
ability that the application will become a paid-for issue, and since (~ is C 
adjusted for not-takens and nonissues, it is clear that AC > AC, and, 
consequently, that / iv  > AC 

As was the case with the actuarial method, the validity of the above 
analysis depends on the assumption that the values of AC (AC) and AKr, 
calculated on the basis of the current ordering limit, accurately reflects 
what their values will be based on the new limit A ~' (,4t3. Intuitively, one 
may wonder how this could be the case without a more careful analysis 
of the other tools used on each class. As a specific example, it should be 
expected that if a medical examination is eliminated in the amount range 
A-2A, one would lose proportionately more effect cases than if these 
examinations were eliminated in the amount range 2A-3A. This is a result 
of the fact that the other tools utilized within 2A-3A should be more 
sophisticated than those used within A-2A. Consequently, there will be 
proportionately more multiple-effect cases there and, hence, fewer lost 
if examinations are forgone. In other words, with all else equal, the higher 
one sets nonmedical limits, the less valuable these examinations become. 
Clearly, a similar statement would be true for other tools as well. 

The underwriting method does not accurately reflect this redundancy 
in underwriting information. The actuarial method would reflect this re- 
dundancy to some extent, although its influence on issue mortality will 
be slow to emerge and will be masked to a great degree because of the 
underwriting factor discussed above. The role of these other underwriting 
tools will become apparent in the identities that emerge in the next section. 

lll. THEORETICAL UNDERWRITING MODELS 

In this section, the relationship between extra mortality cost differen- 
tials (AKr) and standard mortality cost differentials (VM) will be explored 
under a number of different hypotheses. Of course, since this is a theo- 
retical investigation, various factors must be idealized, and this will be- 
come apparent in the definitions and assumptions. 

In Section A below, the "dual mortality standard" approach will be 
considered, where it is assumed that actual historical mortality experience 
of each of the two underwriting groups is known. Since the primary use 
of this approach will be to determine nonmedical issue limits, notation 
will be used that reflects this specific application. 
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In Section B below, the "single mortality s tandard"  approach is de- 
veloped, which will generalize the results of Section A, to the situation 
where two or more arbitrary underwriting tools are to be evaluated, but 
where the historical mortality experience of each underwriting group sep- 
arately is assumed to be unknown. There it will be shown that the use of  
a composite of this experience as a mortality standard is sufficient if it is 
properly chosen or constructed.  

The application of these models to the real-world situation of deter- 
mining ordering limits for specific underwriting requirements is also dis- 
cussed in each section. 

A. The Dual Mortality Standard Approach 

Throughout  this section, the following notation will be used, where by 
"morta l i ty  cos t "  or "ex t ra  mortality cos t"  is meant the present value of 
such cost per $1,000 applied. Let 

M E (M~0 = Mortality cost for a group of applicants deemed standard 
according to all underwriting tools required for the medical 
(nonmedical) class; 

M~- (h;P0 = Mortality cost  for a group of  applicants deemed standard on 
the basis of the medical examination (history) alone; 

3~/H = Mortality cost for a group of applicants deemed standard on 
the basis of  the medical history questionnaire and all other 
underwriting tools usually required for the medical class; 

K L" (K ' )  = Extra mortality cost for the medical (nonmedical) effect cases 
calculated according to equation (6), where M(q) is taken as 
M ~ ( M I+); 

L E (L H) = Extra mortality cost for those effect cases within the medical 
(nonmedical) class attributable to some other  underwriting 
tool but not simultaneously attributable to the medical ex- 
amination (history), calculated, as is K, relative to the ap- 
propriate standard; 

r ~: (r n) = Probability that a medical (nonmedical) application will be- 
come a medical (nonmedical) effect case: 

s E (s") = Probability that a medical (nonmedical) application will be- 
come an effect case for the other tools utilized within the 
medical (nonmedical) class, calculated according to the con- 
vention underlying L ~ (L H) that all multiple-effect cases are 
attributed to r E (r ' )  alone. 

Also, let such symbols as/~e and gn be defined as above,  only under the 
alternative convention that all multiple-effect cases are credited to the 
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other tools alone and not to the examination or history. Since insurance 
companies often have more conservative " spec ia l "  medical requirements 
for certain groups of applicants, such as relatives of  agents or those ap- 
plying for '~preferred" class policies, it is natural to categorize the effect 
cases resulting from such examinations with ,fL. This is consistent with 
the intent of  ~L to reflect all effect cases that would be produced inde- 
pendent of  the existence of the regular nonmedical issue limit. 

In anticipation of Section A, 3, below, dealing with practical consid- 
erations, it will be assumed that substandard mortality experience is 
known only for those applicants who were rated subsequent to medical 
examination. Consequently,  all extra mortality costs defined above must 
be calculated with this experience for q ' .  Since nonmedical underwriting 
is generous in terms of  its categorization of  standard lives (i.e., M e- < 
M"), it seems reasonable to expect  that it will also be generous in cate- 
gorizing substandard lives. Hence,  the above assumption will understate 
the mortality experience of nonmedical substandard issue. To accom- 
modate this let X" be the mortality cost of an effect case within the 
nonmedical class in excess of that predicted by the medical issue q ' .  
Although the value of  X"  will be discussed further in Section A, 3, below, 
it will be assumed here that 

X u = } , (M" - M L), 0<~ h ~ 1 . (9) 

When no other underwriting tools are utilized, the value of a medical 
examination is well defined and simply equals the mortality cost differ- 
ential that it creates in the standard issue class. In the more realistic 
setting, however,  there are a number of  mortality differentials of  interest 
that reflect some aspect of the " v a l u e "  of medical underwriting. Three 
such differentials are the following: 

1. The total issue differential--the difference between the mortality costs of the 
medical and nonmedical standard issue classes (M" - M~), denoted by VM. 

2. The absolute differential--the difference between the mortality costs of the 
medical and nonmedical standard issue classes on the assumption that no other 
underwriting tools were utilized (Mn _ M~), denoted by Vh4. 

3. The marginal differential--the difference between the mortality costs of the 
medical standard issue group and the standard issue group that would exist if 
the examination had been replaced by a medical history, but all other tools 
utilized on this group were left unchanged (N/" - M 0 ,  denoted by V~/. 

It should be noted that the only difference between definitions 1 and 3 is 
the assumption regarding the other tools utilized on the nonmedical group. 
Of course, it is the marginal differential that should be utilized for the 
purpose of  establishing the nonmedical issue limit. 
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In the following, identities between these differentials and the extra 
mortality cost differentials will be derived under the ideal setting that the 
same applicant group could be subjected to two underwriting scenarios 
and the results compared. It will also be assumed that the mortality ex- 
perience of the standard issue groups and all effect cases can be accurately 
predicted and that all calculations of the various M ,  K ,  and L values are 
performed with regard to the same lapse assumption. 

1. A SPECIAL CASE: NO O T H E R  TOOLS U T I L I Z E D  

Given an applicant group of amount A, medical underwriting will par- 
tition A into E .~ (the standard group) and E K (the effect cases). Conse- 
quently, the total mortality cost of the applicant group is predicted to be 

E,WM E + E S ( M  ~- + K ~ ) .  

Had this group been underwritten nonmedicaily, the total mortality cost 
would have been predicted to be 

H ~ I M  ~t + H X ( M  II + K n ) ,  

but because of the understatement of nonmedical experience, it is actually 
this quantity plus H ^ X  " .  

Since the total mortality cost is independent of the partitioning, the 
above predictions can be equated, producing 

V M  = A K r  - XHr  II , (lo) 

where A K r  = KEr  ~ - K " r  Jt. Hence, if nonmedical substandard experience 
were known and used to calculate K H, or if all nonmedical effect cases 
were required to be medically examined, equation (!0) would reduce to 

V M  = A K r .  ( i l )  

In this best of all worlds the above identity certainly is expected, since 
each term is a measure of the mortality cost of the group of poorer risks 
that slipped through the nonmedical sieve. The term VM isolates this 
group as the difference between the groups that were issued standard, 
whereas A K r  identifies this group as the difference between the groups 
that were screened out. Utilizing equation (9) in equation (10), we would 
expect in general that 

A K r  
- -  <~ V M  <~ A K r .  (12) 
1 + r H 
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2. THE GENERAL CASE 

Subjected to complete medical underwriting, an applicant group of 
amount A will be partitioned into the groups E ~t, E x, and E L, and the total 
mortality cost predicted to be 

E M M  E + EX(ML + K L) + U ( M  E + L E ) .  (13) 

Similarly, a prediction based on complete nonmedical underwriting can 
be made and augmented by ( H  x + H L ) X  " .  Equating these values, we get 
an identity for the total issue differential, 

V M  = A K r  + A L s  - X n ( r  u + s " ) .  (14) 

Utilizing equation (9), we expect the following bounds: 

A K r  + A L s  

l + r n + S H 
<~ V M  <~ A K r  + A L s  . (15) 

For the absolute differential, it is clear that h4 E 1> M E, since the "standard" 
issue class under this scenario is E M + E L. Similarly, ,~n/> M n. However, 
the relationship between V M  and VM' is less apparent. 

Given this scenario, the medical applicant group will be partitioned into 
E M + E L and E K, and the total mortality cost will be predicted to be 

( E  M + E L ) I f 4  E + E K ( M  E + K E ) .  (16) 

Since this expression must equal expression (13), we obtain 

Similarly, 

He nce, 

$E 
~ t  E = M e + ~ L ~ : .  

1 - r  E 

S H 
= ~ (L  n + X n ) .  ~ l n  M u  + ! - r"  

S H S E 
VI(4 = V M  + ~ ( L  n + X u) - - L  E ,  (17) 

1 - r n  ! - r  E 

and bounds for V37/can be produced by using (9) and (15). Depending on 
the relative value of the other tools, therefore, the difference between 
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V/f/ and 7M can be positive or negative. It should be noted that one 
cannot conclude,  a priori, that s n <~ s L ,  even though the other tools used 
on the medical group are assumed to be more effective than those used 
on the nonmedical group. This is because we certainly have r e > r u, and, 
by convention,  multiple-effect cases are not attributed to these other  tools. 

In order to develop an expression for ~/",  it is first necessary to consider 
more carefully the impact of the underlying underwriting scenario on the 
effect cases, compared with the usual medical underwriting underlying 
the development  of  M E . 

Since the same package of other tools is assumed to be used in each 
scenario, none of  the effect cases that make up s E will be lost. Also, none 
of the effect cases attributable to both the medical examination and some 
other tool will be lost, since the examination was redundant for these 
cases anyway. Hence ,  the only effect cases lost under the new scenario 
will be those cases identified by the medical examination alone that cannot 
be discovered by use of the medical history. 

By definition, ?L- reflects effect cases due to the examination alone. 
Unfortunately, although i u (like i E) can be calculated moderately easily, 
it is not exactly what is needed for this scenario. What is needed is the 
medical history probability of  producing an effect calculated so as to 
exclude all multiple effects that would be attributable to the other  tools 
ordinarily utilized on the m e d i c a l  class, say ~", and this is unknown in 
general. What can be noted, however, is that fH ~< iN, since the other  tools 
used on the medical class are at least as efficient as those used on the 
nonmedical class. Moreover,  since the group of nonmedical effect cases 
can be assumed to be a subset of  the group of  medical effect cases, it 
cannot overlap the group of  medical class other tools '  effect cases any 
more than the group of medical effect cases overlaps that group. Con- 
sequently, 

r n _ ( r  L _ ?~)  <~ ? n  <~ 7 1 t .  (18) 

In the following, i "  will be assumed to be equal to 71/in order to simplify 
notation. Also, the unit extra mortality costs of this group, s a y / ( " ,  will 
be taken to be equal t o / ~ n  which is readily calculated. This assumption 
may be considered reasonable even if ~H + 7t~, and, if so, the sensitivity 
of the resulting identity for V~/ to (18) can be observed by simply re- 
evaluating this identity by substituting r n - ( r  e - ? e )  everywhere  for in, 
thereby producing a range for VM. 
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Now an applicant group submitted to complete medical underwriting 
will have a predicted total mortality cost of 

E M M  e + ~_/¢(M E + /~L-) + /~L(ML + L t ) ,  (19) 

which equals expression (13) with multiple-effect cases categorized dif- 
ferently. 

Subjected to the hypothesized nonmedical underwriting scenario, this 
total cost, augmented by the value of  X H, is given by 

/Z/M/~/M + /:/r(M" + /¢" + )~u) + /:/t(Ma + La + )~H). (20) 

It should be noted that the value of effect cases can be calculated with 
respect to any mortality standard, and, as will be seen in a moment,  it is 
worthwhile to calculate those in expression (20) with respect to M "  rather 
than ~/~. 

As was noted earlier, /~L = /~t because of the convention regarding 
multiple-effect cases. It is also clear, therefore, that M n + £ "  + 2~. = 
M e + £E, since each represents the total mortality cost of  this common 
group, symbolically expressed with respect to two different standards. 
Finally, according to earlier observations,  we have 

/:/~ = E ~ + L-I, _ / : /s .  (21) 

Equating (19) to (20), and utilizing (21) and the above remarks, we have, 
sequentially, 

( E  M + £ t : ) M e  + E K g E  = (E~t + £~c _ f tK)~/i t t  + I I K ( M  . + I¢"  + g u ) ,  

( E  M + F_,X _ l:iX)(~4 . _ M e) = [:'K[,(E _ IzP"[C' - [ I X ( M "  - M e + X U ) ,  

V/~/ = AR~ - /"(VM + 2 u) 
1 - ~ r  _ t=" ' ( 2 2 )  

AR~ - 2rUVM A/¢~ - ~"VM 
~< V~/<~ (23) 

3. PRACTICAL CONSIDERATIONS 

Each of  the identities derived above shows the necessary relationship 
between differences in standard issue mortality costs (VM) and differences 
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in extra mortality costs saved by underwriting (AK and ALL under  a 
certain set of assumptions. As part of the derivations, it was assumed that 
the future mortality levels of the current applicant group were known,  
which is never  the case. However,  on the basis of  current mortality ex- 
perience, it is possible to determine M(q) for the standard issue classes, 
and M(q') for the substandard classes (see below), with which current  
values of  K and L can be determined. Although neither M(q) nor M(q') 
will accurately predict the future experience of  the current applicant 
group, it is reasonable to assume that K and L calculated with these values 
are fairly accurate measures of  the mortality savings due to the various 
tools. This is based on the assumption that both M(q) and M(q') are in 
error in the same way, namely, they both overstate probable future results. 
Hence,  some of this error  is offset in the calculation of K and L. 

Therefore,  on the basis of an application-by-application study, estimates 
of the parameters r, s, K, L, and X are made (see below) and can be 
substituted in formulas (14) and (15) to predict a level of VM that is 
consistent with these data. The new value of  VM as well as the other  
estimated parameters can then be used to predict VM and V ~  from (17), 
(22), and (23). As was noted earlier, ~7~ should also be evaluated to reflect 
(18), and it is one 's  final estimate of V/¢4 that would be used in (4), for 
example, to determine nonmedical issue limits. 

Hence,  the utility of  these identities depends solely on the credibility 
of the assumptions upon which they were based, and this is discussed 
next. 

First of  all, it is necessary to be able to calculate or estimate all of  the 
parameters mentioned above. For the probability r L (r"), one should reflect 
all adverse underwriting actions taken, or expected to be taken, as a result 
of information on the medical examination (history). This includes ratings 
based directly on this initial information as well as those resulting from 
any information obtained from another tool, the ordering of which was, 
or would have been,  motivated by this initial information. The corre- 
sponding value of  s is then defined as the overall probability of becoming 
an effect case (which is well defined), minus the value of r. 

To recategorize multiple-effect cases, the probability ,¢E should reflect 
all adverse actions taken, or expected to be taken, as a result of  infor- 
mation on examinations ordered because of  special requirements,  or in- 
formation from any other underwriting tool utilized except those tools 
ordered exclusively because of  information noted on the medical exam- 
ination. The value of  r is then defined as the total probability minus the 
appropriate s. 
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Of  course,  the above process  will require professional judgment ,  but 
this is unavoidable.  One particularly problematic group is the group of 
applications incompleted before all necessary tools are received and a 
mortali ty class determined. One needs to est imate both the likelihood that 
the case would have become an effect case,  and the most probable mor- 
tality class given that it did become an effect case. For such cases ,  the 
value of  this probability could be used in the estimation of r or  s, rather 
than the more usual procedure  for finalized cases of  counting such a case 
as a zero or I. 

The value of h might be est imated as follows, where X n = h 07M). I f  
a substandard nonmedical applicant is required to undergo an examina-  
tion, let X ~ = 0. Otherwise,  it seems reasonable that the " e r r o r "  in the 
rating will decrease as the rating class increases.  Using ~'M as the error  
in the standard class, zero for the declined cases,  and some actuarial 
archery, h could be est imated by 

where / j ,  j = 1 . . . . .  n - 1, equals the proport ion of  nonmedical effect 
cases in the j th  mortali ty class that were not subsequently examined,  and 
I, is the proport ion of  those cases either declined or class-rated subsequent  
to examination.  Obviously,  the term in (24) corresponding to j = n adds 
nothing, but was notationally included as a reminder  that 

~]li= 1. 
j~i 

In order  to calculate K and L as they were defined above,  it is necessary 
to have standard and substandard mortali ty experience for the respect ive 
issue groups. Unfortunately,  one can expect  to develop such exper ience 
only for the paid- for  issue groups,  and this causes  one to make an as- 
sumption regarding the selective potential of  not-taken policies. For stan- 
dard issue, it is fairly easy to believe that the not-taken policies are ran- 
domly distributed throughout the issue class, since these applicants were 
issued exact ly as applied. Hence,  they have no new reason for compar ison 
shopping and selecting against the company  by searching for a more 
favorable underwriting decision elsewhere.  Applicants who receive a 
rated policy do have such a reason. Depending on perspect ive,  they have 
been issued either a more costly policy than originally quoted or a policy 
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with a smaller face amount for the same premium. In either case, this 
perceived "'bait-and-switch" probably motivates many applicants to reas- 
sess their need for insurance and, if it still exists, to consider shopping 
for a better deal. One may speculate, therefore, that those applicants who 
refuse substandard policies because they disagree with the need for the 
rating given have, as a group, better mortality than those who subse- 
quently pay for them. The reliability of a person's perception of his health 
is best appreciated by considering individual annuitant mortality. 

In any event, actual substandard experience probably overstates the 
experience of the associated issue group. One way to modify this expe- 
rience would be to set 

q '  = q'~ - ( q l  - q ~ ) q " ' ,  (25) 

where ql is the actual experience, q" is one's guess as to the appropriate 
level for the not-taken policies, and q~' is the probability than an issue in 
the given substandard premium class will become a not-taken policy. 

Declined policies are another problem, since by definition n o  experience 
exists. As is the case for incompleted applications, mortality estimates 
should be made with the assistance of the underwriting and medical staff. 
For declined applicants, estimates should at least distinguish between 
those declined because of predictable yet exceedingly high mortality (e.g., 
obese hypertensive diabetics) and those whose mortality is entirely un- 
predictable for several years, yet will be more stable after this period 
(e.g., those anticipating or recovering from major surgery). 

The appropriateness of the lapse assumption may be questioned, al- 
though it is often the case that substandard experience is quite similar to 
that of standard issue. It should be noted that the above identities depend 
on this assumption, since this justified the equating of total mortality 
costs, independent of the underwriting scenario. However, if this as- 
sumption is not considered appropriate, it is possible to determine the 
sign of the "error" in Vf, /by using the results in the Appendix. This is 
because M is a decreasing function of the lapse assumption, that is, M 
decreases as the probabilities of lapse increase. For example, if the lapse 
assumption utilized is appropriate for M ~, yet is considered overstated 
for f4", the calculated value of VM will understate the value that would 
have been produced ifM ~t could have been calculated with the appropriate 
lower lapse probabilities. 

Finally, in the real world, the same group cannot be underwritten twice. 
Therefore, it is important that the study be designed to normalize such 
observable characteristics as the sex distribution of the two classes under 
study. 
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In addition, as was noted in Section II, A, it is not really expected that 
the preunderwriting mortality profiles of  the medical and nonmedical ap- 
plicant groups are equal, yet the above model assumes this. Although 
there does not appear to be an accurate method of quantifying the effect 
of the socioeconomic and antiselection factors, it is straightforward to 
represent symbolically what their effect would be. Let  D be the unit 
mortality cost of the total nonmedical applicant group in excess of  the 
cost for the medical applicant group. Then the development preceding 
(14) could be modified to produce 

V M  = AKr  + ALs  - Xn(r ~t + s ' )  + D .  (26) 

The formula for V~/would  not change in appearance,  but would change 
in reality, because it depends on the value of VM. 

Finally, only the antiselection component  of D, D A, would play a role 
in the development of  V~/because  of  the assumed underwriting scenario. 
The derivation preceding (22) would have produced,  in this case, 

V33/ = A/~? - ?"(AM + X,t) + cD a (27) 
I - ,~E _ ~n 

where c ~< ! reflects the fact that some antiselection would be prevented 
by the improved package of  other tools. For example, one might propose 
that c be proportional (or equal) to ?:/r L. 

B. The Single Mortal i ty  S tandard  Approach  

In this section, the results of Section A above will be generalized in 
order to allow the evaluation of underwriting tools other than the medical 
examination. The primary difference here is that mortality experience 
usually is not partitioned on the basis of the underwriting tools utilized+ 
except  for the medical/nonmedical partition. 

The difficulty that this lack of experience data introduces is one of 
choosing an appropriate standard or standards against which the extra 
mortality costs of the effect cases can be evaluated. It will be shown that 
the use of one standard, judiciously chosen and dependent  on the tools 
under study, is sufficient to enable the evaluation of the counterparts  to 
the three mortality differentials defined above. 

In the most general setting, there will be n primary tools under study, 
T,, i = 1 . . . . .  n, along with which n secondary groups of  other tools, 
0~, are utilized. As a convention,  it will be assumed that the sophistication 
of the primary tool or secondary group increases as i increases. In par- 
ticular, Tj is the crudest or least valuable, and will often represent the use 
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of no primary tool. The associated secondary groups of tools. O,, are 
simply defined as everything else utilized during the underwriting of  the 
T, group except those tools that were ordered exclusively because of  Ti. 
In general, these secondary groups do not represent well-defined packages 
of  tools applied uniformly throughout the respective T, classes, since the 
ordering criteria for each of the other  tools will not usually coincide with 
those for L. 

Throughout  this section, the following notation will be used, where, as 
before, " c o s t "  means the present value of such future costs per $1,000 
applied. Let 

Mr, = Mortality cost for the group of applicants deemed standard ac- 
cording to 7",. and Oi (i = 1 . . . . .  n): 

A;/i -- Mortality cost for the group of applicants deemed standard ac- 
cording to Ti (i = 1 . . . . .  n); 

~'~ = Mortality cost for the group of applicants deemed standard ac- 
cording toT,  and O,+t (i = l . . . . .  n - l): 

M -- Mortality cost for some group of  standard issue to be determined 
later; 

K, = Extra mortality cost for the T, effect cases calculated according to 
(6) with M(q) taken as M: 

L~ = Extra mortality cost for those effect cases within the T, class at- 
tributable to 0, but not simultaneously attributable to T,, calculated 
with M(q) taken as M: 

r~ = Probability that an application in the T~ class will become a T~ effect 
case; 

s~ = Probability that an application in the T, class will become an O~ 
effect case calculated according to the convention underlying L," 
and 

/~, £i, ~, ~ = Counterparts  of  K,  L~, r,. and s,, respectively, defined so 
that O~ has priority for multiple-effect cases. As was discussed in 
Section A above,  effect cases produced by T, that were ordered 
because of  some special requirement,  independent of the regular 
age/amount requirement,  should be categorized with .¢~. This is 
consistent with the intent of S, to reflect all effect cases that would 
be produced independent of  the regular ordering limit. 

As an example of a multiple-effect case, consider the following. Assume 
that information on an inspection report (T,) motivates the need for a 
medical examination, because of an indication of, say, hypertension. As- 
sume also that the information obtained on the examination results in a 
class rating. Then,  if the inspection report was the only reason tot  ordering 
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this examination,  the examinat ion would not be considered part of  the Oi 
group, and credit for the effect case would be counted in ri and ~:i. However ,  
if the examination was also required because of, say, age/amount,  it would 
be considered part of  the Oi group, and credit for the effect case counted 
in r, and L. 

As before, three sets of  mortali ty differentials will be considered: 

1. Total issue differentials: VM~ = M, - M,T~ (i = 1 . . . . .  n -- I); 
2. Absolute differentials: V~L = ~/, - ~/,-t (i = I . . . . .  n - I); and 
3. Marginal differentials: V/~/, = A~/, - Mi~ (i = 1 . . . . .  n - I). 

In the following sections, identities between these differentials and the 
extra mortality cost differentials will be derived under the ideal setting 
that the same applicant group could be subjected to two underwriting 
scenarios and the results compared.  It will also be assumed that the 
mortali ty experience of  the standard issue groups and all effect cases  can 
be accurately predicted and that all calculations of  the various M, K, and 
L values are performed with regard to the same lapse assumption.  

In order  to motivate the methodology used, the special case n = 2 will 
be t reated before the case for  general n. 

I. A S P E C | A L  C A S E :  rt = 2 

Subjected to the underwriting requirements  appropriate  for the T~ 
group, an applicant group of  amount  A will be partit ioned into Ay,  A~, 
and A~, where these symbols  have the obvious meaning. On the basis of  
this partitioning, the total mortal i ty cost is predicted to be 

A'( t Mt + AX~(M + KO + A{-(M + L O ,  

which can also be written as 

AM,  + A f K ,  + A~L, + (A~ + A[)(M - M O .  

Subjected to the requirements  appropriate  for the T2 group, the cost  is 
predicted to be 

A M ,  + A~K, + A~L2 + (A x + A~)(M - M2).  

Equating and simplifying, we obtain the following identity: 

V M t  = A K j r j  + AL~s~ + (r2 + s~.)(M - M . )  

- (r,  + s , ) ( M  - M,), 

where A is the usual forward-difference operator.  

(28) 
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In its present form. equation (28) is not too useful because of the pres- 
ence of M3 and M2 in the expression on the right. Although the applications 
will be discussed in Section B, 3, below, let us assume for the moment 
that it is known that 

M = o~M,  + o 2 M ~ ,  t ~  + a~ = 1 . 

Then it is easy to verify that 

(29) 

M - M t  = - a 2 ~ M i .  M - M._ = a , V M , .  (30) 

Substituting expression (30) in equation (28) and simplifying, we obtain 

AKjr~ + A L j s l  

V M I  = 1 - a~(r._ + s~.) - a.(r~ + s , )  
(31) 

Had the applicant group been subjected only to T~, the predicted costs 
would have been 

(A'~ + A~)h.1,  + AA( (M + K , ) ,  

which, when equated to the cost above determined by T~ and O~, results 
in 

Si 
Nll  = M~ + (L~ - a . V M i ) .  

1 - -  r I 

S i m i l a r l y ,  

S~ 

1 ~  z : M 2 + " ( L .  + a , V M O .  
1 - r ,  

Hence, 

a2s, a,s2 ] s, L, s, 
Vif4 ,  = "~M, 1 1 - r, 1 ~ r2]  + 1 - r--~ 1 - r2 

- -  L2  • ( 3 2 )  

As was the case before, the evaluation of the hypothetical underwriting 
scenario of Tj and O. involves the small problem of  estimating i~, which 
is the counterpart to t:~ when 02 is the collection of other tools rather than 
O,. One can justify the following expression, corresponding to expression 
(18): 

r~ - (r2 - ~..) ~< ~ <~ i:~ . (33) 
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As before, in order  to simplify notation, the identity for ~7~/, will be 
derived assuming that P, = ~, and/~z = /~,. The resulting expression can 
then be reevaluatefl reflecting the potential range of i~ given in (33). Of 
course, if T, represents the use of  no tool, then r, = ~, = ij = 0. 

Subjected to T2 and 02, the predicted cost,  allocating multiple-effect 
cases to 02, becomes 

a~tM2 + f~X(M + /£2) + A~(M + L2). 

When the scenario of  Tj and Oz is utilized, this predicted cost becomes 

A]'/I~/, + A~(M + /~,) + A~(M+ L,). 

However,  on the basis of the observations made prior to and including 
equation (21), 

/i,M = A~ + A t  - A f ,  and A~(M + L,) = A~(M + L g .  (34) 

Equating the above predicted costs and using equations (30) and (34), we 
obtain, sequentially, 

A~M2 + AX~(M + R 9  = (A~ + At" - A~)~,I, + AX(M + R~) , 

(a~  + AS - .~f)(~/, - M,) 

= fit~(l~, + M - M2) - A~'(R, + M - M 2 ) ,  

and 

V~I,  = AK,  ?, + a ,A~,VM,  (35) 
1 - g 2  - f j  

2. T H E  G E N E R A L  CASE 

By comparing the predicted cost based on Ti and O/with that based on 
T,÷~ and O~+,, we produce the following identity, which is entirely anal- 
ogous to (28): 

Mi - M~+~ = AK~r~ + AL~s~ + (r~+t + s~+O(M - M i ~ )  
(36) 

- (rl + s ) ( M  - M i ) .  

Rewriting Mi - Mi+ ~ in (36) as (M - M,+ ,) - (M - M)  and rearranging, 
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we p r o d u c e  the fo l lowing  n - l e q u a t i o n s  in the  n u n k n o w n s  M - Mi ,  

w h e r e  i = 1 . . . . .  n: 

(I - r ~ + ~  - s , + O ( M  - M , + , )  - (I - r ~ -  s ~ ) ( M  - M A  
(37) 

= AKirl  + A L i s i ,  i = 1 . . . . .  n - 1. 

Assuming ,  as  be fo re  in (29), that  it is k n o w n  that  

M = 2 a , M i ,  2 ai = l ,  (38) 
i I i - I  

the  u n d e r d e t e r m i n e d  s y s t e m  in (37) can  be a u g m e n t e d  with the  n e c e s s a r y  
nth equa t ion ,  p r o d u c i n g  the fo l lowing  sys t em:  

(1 - ri.~ - s,.~)Y,+~ - (1 - r, - s~)Y, = AK~r, + ',XL,s,, 

i = l . . . . .  n -  1 ,  (39) 

a, E = 0 ,  
i I 

where  Y, = M - M .  
Of  cou r se ,  if (39) is so lvab le ,  the  to ta l  i ssue  d i f ferent ia l s ,  VM~, are  eas i ly  

ob t a ined  f rom the so lu t ion  o f  th is  s y s t e m  by not ing as  a b o v e  that  

VMi = Ale/ ,  i = 1 . . . . .  n - 1 .  (40) 

As  it tu rns  out ,  this  s y s t e m  is a l w a y s  un ique ly  so lvab le  for  the  Y,'s, s ince  
if A d e n o t e s  the mat r ix  o f  coef f i c ien t s  in (39), the d e t e r m i n a n t  o f  A is 
g iven  by  

Det  (A) = ( -  1)"- '  2 a, ]-I (! - r, - s,) , (41) 
i I j g ,  i 

and this can  n e v e r  be equal  to ze ro  g iven  the natura l  r e s t r i c t i ons  t ha t  for  
all i 

a , ~ 0 ,  ri + s , <  I . (42) 

S ince  (41) is o b v i o u s  for  n = 2, let  us a s s u m e  that  it is t rue  for  n = 
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m - 1 and a p p l y  induc t ion  to the  case  n = m. IfA,~ is the  c o r r e s p o n d i n g  
mat r ix  o f  coef f ic ien ts ,  Det  (A,.) can be e x p r e s s e d  in t e rms  o f  co fac to r s  
based  on the las t  c o l u m n  of  A,. ,  p r o d u c i n g  

Det  (A,.) = - ( 1  - r,. - s,.) Det  ( A , . - 0  + a., Det ( U ) ,  (43) 

whe re  U is an u p p e r  t r i angu la r  ma t r ix  wi th  d iagona l  e l e m e n t s  equa l  to 
- ( 1  - r~ - s3 for  i = 1 . . . . .  m - 1. H e n c e ,  s ince  (41) is a s s u m e d  to 
be t rue for  A,._ ~. (43) can be wr i t t en  as 

D e t  (Am) -- ( - 1 ) " - ~ ( I  - r,,. - s,.) 

,~ - ,  ,- - J  ( 4 4 )  

× ~ a~ I-I (1 - rj - sj) + ( - 1 ) "  'a,,, ~I (1 - r~ - s ) ,  
i - I  j d : i  j I 

which equa l s  e x p r e s s i o n  (41) for  r = m. so  the  p r o o f  is comple t e .  
It is i n t e re s t ing  to c o m p a r e  the  m e t h o d  used  here  to that used  in the 

specia l  ca se  of  n --- 2. Clear ly ,  the  s ta r t ing  po in ts ,  (28) and (36). a re  
ident ica l .  The  d i f f e r ence  was  that .  for  (28), the M = M~ te rms  were  
e x p r e s s e d  as  mu l t i p l e s  o f  VMt g iven  in (30), whe re a s  for  (36), the  VM~ 
were  e x p r e s s e d  in t e r m s  o f  M - M~ and M - M~+.. 

To imi ta te  the  m e t h o d  used  in the spec ia l  c a se  above ,  it is on ly  n e c e s s a r y  
to be able  to e x p r e s s  M - M~ as a l inear  c o m b i n a t i o n  o f  V M .  and  this 
can be  done  with the fo l lowing  gene ra l i z a t i on  of  (30): 

n - I  

) - I  

J 
b} = ~ a , ,  1 ~ < j ~ i  - 1 (45) 

k - I  

) 

= ~ a k -  1, i < ~ j ~ n  - 1 .  
k - I  

Had  (45) been  used  in (36), the fo l lowing  n - 1 equa t ions  in the n - 1 
u n k n o w n s  VM~ would  have  emerged :  

2 [b~(ri + s,) - b i+ '~  = j ~-~+3 + si+T) + ~/]VMi AK~r~ + ALis~, 
j ~ i (46) 

i =  1 . . . . .  n - l ,  

where  ~ is the  K r o n e c k e r  de l ta ,  def ined  as 1 if i = j ,  and  ze ro  o the rwi se .  
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It is not difficult to show that  (39) and (46) are equivalent  s y s t e m s  in 
the sense  that  (1) if {Yi}i' ~ solves  (39), then  {AYe} 7 ,~ solves  (46), and (2) 
if {VM~}7:~ ~ so lves  (46), then {E 7 ~ b I 17Mi}7 ~ solves  (39). 

For  abso lu te  different ia ls ,  the same  m e t h o d  used  for  the case  n = 2 
p roduces  

3', 
AT/~ = M, + (L, + Y,), i = l . . . . .  n .  (47) 

[ - -  r i 

where  {Y,} is the unique solut ion to (39). Hence ,  

[ s~ (L, + Yi)] , i =  1 . . . . .  n - 1 .  Villi = VMi  + t7 I - -  r i (48) 

If  Y~ is e x p r e s s e d  in t e rms  of  the VM~ by  using (45), then (48) will be 
ana logous  to (32) in form.  

Finally, lett ing i~ = ?~ for  nota t ional  c o n v e n i e n c e ,  where  ~ is defined 
as before ,  the fol lowing identi ty for  the n - 1 marginal  different ials ,  
V~'/;, can be de r ived  as for  the case  n = 2: 

~ 7 / ~  i 
~ k y ,  + E+,,xe, 

1 - -  S i  * I - -  /zi  
i = 1 . . . . .  n -  1 .  (49) 

Express ing  Y,+~ in t e rms  o f  the VM, ' s  by using (45), then (49) will be 
ana logous  to (35) in form.  

As a lways ,  (49) should be r eeva lua ted  to reflect the range o f  ig, which 
can be e x p r e s s e d  as 

r, - (r,+l - f ,+0 ~ r i  ~<r , ,  i = 1 . . . . .  n - 1 . (50) 

3. PRACTICAL CONSIDERATIONS 

The cons ide ra t ions  no ted  in Sect ion A, 3, above ,  with two addit ional  
cons idera t ions ,  are  sufficient here  as well.  These  two addit ional  cons ider -  
a t ions are (1) the de te rmina t ion  of  a mor ta l i ty  s tandard  by means  o f  choos-  
ing a~ in (29) or  (38) and (2) the de te rmina t ion  o f  K, and L, for  the var ious  
T, underwr i t ing  c lasses .  

In general ,  the choice  o f  the s tandard  on which to calculate  M depends  
on both the tool under  s tudy and the level of  ref inement  avai lab le  f rom 
past  mor ta l i ty  expe r i ence  data.  H o w e v e r ,  mos t  r equ i r emen t s  can  be val- 
ued with the fol lowing list o f  expe r i ence  classes:  ( l)  the nonmedica l  mor-  
tality c lass ,  (2) a " l o w e r - a m o u n t "  medica l  morta l i ty  class,  and (3) one to 
three " l a r g e - a m o u n t "  medical  mor ta l i ty  c lasses .  
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in the best of all worlds, n = 2 and one might have access to experience 
studies upon which M,, the mortality cost for the group on which T: is 
utilized, can be determined. If this is the case, then (35) reduces to the 
equivalent of (22) with ~-H = 0: 

1 - -  ~2 - -  171 

where s:~ is to be varied as ~ to reflect (33). If the alternative tool, T~, is 
the use of no tool, then ?~ = ~:, = rt = 0 ,  and all the remaining parameters  
in (51) can be estimated on the basis only of an analysis of applications 
containing T,. Otherwise,  both applications containing T, and those con- 
taining T~ must be sampled. 

For example, many insurers could develop mortality estimates for their 
large-amount experience (over $100,000, over  $250,000, etc.). Such ex- 
perience data could be used to calculate M.,, where 7", corresponded to 
certain specialty requirements such as urinalysis, X-ray, or EKG. All of 
these studies would then require only a sampling of  applications above 
the respective ordering limits. 

As another example,  the evaluation of what is known as a " c h e c k u p "  
APS can be handled in a similar manner. This underwriting group of APSs 
excludes those ordered because of specific impairments identified on some 
information source such as the application medical history, a medical 
examination, or an inspection report.  Rather, a checkup APS is a request  
for information from a physician that is motivated solely by the applicant 's  
acknowledgment of a recent physical examination or routine checkup. 
Age/amount ordering limits usually depend on the relative timing of  the 
checkup, with more liberal limits suitable as the duration increases. 

To evaluate this requirement,  it may seem natural to assume that the 
mortality of  those applicants on whom such an APS was ordered and who 
were subsequently issued standard is similar to lower-amount medical 
mortality, whether  the application was submitted medically or nonmedi- 
caily (an alternative " s t anda rd"  is discussed below). With such an as- 
sumption, the value of  this requirement can be determined by a study of  
only those applications containing such an APS by using (51) with f~ = 
0, and calculating extra mortality costs based on the assumed mortality 
standard. 

As an example of  a nonzero r~, consider the evaluation of  an appropriate 
limit for the so-called special service inspection report.  This report may 
be of particular interest because of its relatively high average cost, which 
is usually determined relative to an hourly rate rather than a fixed rate 
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per report. Of course,  this average cost should be defined so as to include 
the cost of all necessary geographical transfers that may be billed at a 
much later time. Here,  one of the large-amount mortality classes usually 
would be suitable for use as a mortality standard. In contrast to the above 
examples, however, it would also be necessary here to sample applications 
that contained the next lower report in the IR hierarchy and vary the 
value of ~:~ to reflect the range for ~, defined in (33). 

For the evaluation of some requirements,  however, it will happen that 
either n = 2 and historical data on which to base M2 are unavailable, or 
n > 2. In these cases, one of two approaches should suffice. 

First, it might happen that, although the experience of no individual Ti 
group is available, the experience of the group of all T , ' s  is known. If this 
occurs, the combined experience group would be a suitable mortality 
standard. The value of  the ai's in (29) or (38) could then be defined relative 
to the proportion of  applications (by amount) in a random sample that 
contained T~ (TI could be " n o  tool") .  More specifically, if c~ equals this 
proportion, then a~ is taken as proportional to c g ( l  - r ,  - s~ - q T ' ) ,  where 
q~g is the probability that an application containing T, will not become an 
effect case and yet will not be issued, because of the applicant's request. 
The proportionality constant is defined so that Ea, -- i. If it is believed 
that the not-taken probabilities for the standard issue T, subgroups are 
appreciably different, this could be reflected in these proportions in the 
obvious way. 

Of course, the actual study need not be conducted on a random sample 
of the group of applications containing some T,, since such a sample is 
likely to be heavily weighted with the T~'s with smaller i. The random 
sample is really needed only for the determination of a~, and the actual 
study can then be performed on samples of some Ti subgroups, and sup- 
plemented versions of others, in order to have comparable group sizes 
for each Ti. 

As an example for n > 2, consider the evaluation of the hierarchy of  
"medica l "  limits above the nonmedical limit that usually separate the 
medical class into paramedicals, exams given by several " g r a d e s "  of  
physicians, and/or "double  examinations."  Here, combined medical ex- 
perience would be the appropriate standard. 

This approach could also be used for the simultaneous evaluation of 
the several scales of ordering limits utilized for the various cost inspection 
reports. Here,  the appropriate standard would be an "aggregate"  mor- 
tality table based on all issue experiencc.  This application, however,  in- 
volves a great deal of inefficiency because a random sample will be so 



M O R T A L I T Y  COST V A L U A T I O N  307 

heavily weighted with applications containing no inspection report, or the 
lowest cost report. 

To remedy this, another approach could be utilized that is workable 
under the condition that, although the experience of the group of all T]s 
is unavailable (or impractical to use as above), this group can be parti- 
tioned into several groups for which the experience is known. This par- 
titioning need not be with respect to parameters involving the Ti's, since 
any partitioning will do. Unlike the above two general approaches, this 
method utilizes a value of M that is constructed. 

For example, it may be assumed as part of the checkup APS study 
discussed above that the group of medical (nonmedicai) standard appli- 
cants with a recent checkup is a random sample, from a mortality point 
of view, of the group of all medical (nonmedicai) standard applicants. If 
this is the case, the appropriate standard would be constructed as 

M = b , M  H + b , M  ~ + b ~ M  E+ , (52) 

where M ' L  M E, and M E* are the mortality costs based on the nonme:ical 
and two medical issue classes (partitioned by amount), and bj is detined 
relative to the proportion cj, where q,. is the probability that a randomly 
sampled application containing such an APS will be in the jth experience 
group. As before, this value of M would be used as M2, and (51) applied 
with r, = 0. 

As a final example, consider the IR study noted above, where the group 
of all T , ' s  is the entire applicant class. Assume that nonmedical experience 
and two or three classes of medical experience have been defined and 
quantified and the respective values of M, denoted as in (52), calculated. 
The initial sample is then drawn as three or four random samples, one 
from each of these subgroups of applicants. The proportion drawn can 
be chosen in such a way as to offset to a great extent the skewness by 
number of reports that would occur with a single random sample. On the 
basis of this combined group of applications, the standard would be de- 
fined by 

with 

M = b t M  u + b 2 M  ~: + b 3 M  e* + b 4 M  ~ *  (53) 

Ci 
hi ~ T  [1 - r(j) - s ( j )  - q ~ ] ,  (54) 

^i 
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where C~ is the proportion of the total sample that was drawn from the 
respective experience class, k, the sample proportion used, and r ( j ) ,  s ( j ) ,  

and q~ have their usual meaning, but generalized to the M ~ class for j 
= 1, the M E class f o r j  = 2, and so on. For example, r(1) is the all-T~ 
probability of producing an effect case in the M ~t class. Again, the pro- 
portionality constant in (54) is determined so that Ebj = 1. Of course, M 
in (53) will theoretically be equal to the "'aggregate" mortality cost for 
a single random sample and can be defined that way directly, based on 
actual experience, if it is believed that the parameters in (54) have been 
reasonably stable for several years. 

Finally, let ci be the proportion of applications from the j th experience 
class that contains T~, the ith report in the IR hierarchy (Tr = no report). 
Then M = ~ , a , M i ,  where the a~'s are defined by 

a i ~  k j  ] (1 - r,  - s~ - q 7 9  • (55) 

As before, not-taken experience could be reflected in the definition of a~ 
and/or bj if desired. 

Hence, fairly detailed analyses of many requirements can be made on 
the basis of only four or so mortality standards if the sample for the study 
is carefully drawn. 

One final consideration, as noted above, is the determination of K~ and 
L, for the various T~ underwriting classes. It was assumed in the above 
development that the mortality experience of each substandard class for 
each Ti applicant group could be produced. In reality, however, historic 
substandard mortality experience usually will be available for analysis 
only separated by substandard class, and the vast majority of this expe- 
rience will be from the medically underwritten applicant class. Hence, 
mortality predictions for effect cases in an underwriting class must be 
based on experience that will not in general be of that class. 

In Section A above, it was assumed that mortality predictions for all 
effect cases were based on historic substandard experience of medically 
examined lives, and an adjustment X ~ was proposed to correct the un- 
derstatement that this caused in the predictions for the nonmedicai effect 
cases. A similar procedure will now be investigated in this more general 
setting. 

Let 

M j, = Mortality cost of the effect cases from the T, applicant group that 
are in the jth substandard class: 
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MJ = Mortality cost of  the j th  substandard experience class, modified as 
in (25) for not-taken policies if deemed necessary;  

= Proportion of effect cases from the Ti applicant group in the j th 
substandard class, E~ ~ = 1 for all i. 

Hence ,  per unit of  effect case, the mortali ty cost of  all effect cases from 
the 7",. applicant group is predicted to be Es diMJ, but is really equal to 
Ej ~M~. Hence,  the prediction error per unit, E~, which must be added to 
the cost predicted, is given by 

E, = ~ ~(M~ - M 0 .  (56) 

Assume that, corresponding to (38), for each j there is {/~} such that 

(57) 

This was the case in Section A above,  w h e r e b i  = 0 a n d ~  = 1 for all 
j ,  E~ = X ~, and E, = 0. Also, if M in (38) is based on the experience of  
medical issues, then, since the experience underlying M r is usually from 
this same group, it is clear that b~ could be est imated from a,  in (38) by 
taking into consideration the various probabilities of  becoming an effect 
case, the d~'s above,  and the probabilities of  becoming a noneffect,  non- 
issue case, a not- taken standard issue, and a not-taken substandard issue. 
Hence ,  in a number  of  instances,  the parameters  b~. can be estimated. 

Combining (56) with (57), we have, since E~ ~ = 1. 

(58) 

In Section A it was effectively assumed that M~ - MS = [(n - j)ln] 
(M~ - M2), where M~ (Mz) corresponds  to M u (ME), j = 1 . . . . .  n - 1, 
enumerates  the substandard classes,  and j = n the declined class. Gen- 
eralizing this, assume that 

M 4 -  M~. = xj(M~ - /14,), 0 ~ < x ,  < x , _ , < . . .  < x ,  ~< 1 . (59) 

Then, 

E~ = ~'i dJ)~:~(Mi- E~ b~Mk). (60) 

Adjusting the predictions made in (36) with those values of  Ei, for example ,  
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the system that is analogous to that in (39) becomes 

(1 - r . a  - s , + , ) Y , + ~  - (1 - r ,  - s ) Y ,  

= AKir ,  + AL , s ,  + A[(r~ + s,)E,] , i = 1 . . . . .  n - 1 ; (61) 

• a~Y, = 0 . 
i - [  

In practice, the solution { Y,} to the unmodified sys tem (39) can be utilized 
to produce E, in (60) (recalling that Y, = M - M),  and then the modified 
system in (61) can be solved. Of  course,  the iterative procedure  

Ei  = 0-"-*  Y i - - - ' M i - - ~ E i - ' - ~  Y , - - " M i  . . . .  (62) 

could be repeated again and again, although it is an open question as to 
when such a procedure "conve rges . "  

In a similar fashion, (31) and (46) can be modified. The identity for the 
absolute mortality differentials in 02)  or (48) then becomes  

(L, + E + E , ) ]  . 
] 

VAt ,  = V M i  + V ! - r~ 
Si 

J 
i = 1 . . . . .  n - 1 ,  (63) 

and that of the marginal mortali ty differentials in (35) or (49) becomes 

~7/~ i 
AR?, + AGe, + Y,+~Aei 

1 - L + I  - L 
, i =  1 . . . . .  n -  1 .  ( 6 4 )  

IV. OTtlER MODELS 

Although the models presented in this paper can be considered fairly 
complete  in their ability to accommodate  the evaluat ion of  various un- 
derwriting tools, it should be kept in mind that it was assumed throughout 
this paper  that the present value of mortality costs was the correct  measure 
with which to evaluate an underwriting requirement.  More specific~illy, 
differentials in the mortali ty costs  associated with various resultant classes 
of  standard issue were used to estimate value. Although this measure has 
intuitive appeal and reflects the majority of the value of underwriting, it 
is basically a " l o c a l "  measure  in scope and does not necessarily reflect 
the " c o r p o r a t e "  impact of  underwriting in full. 
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For example,  this measure  is not sensitive to the effect of  underwriting 
on not- taken experience and implicitly assumes  that the discovery of all  
ratable information " s a v e s "  the insurer money, even though the likelihood 
that a substandard issue will generate premium income is far less than 
that for a standard issue. Also, the measure  utilized here does not lend 
itself easily to the analysis of  various issue-volume models and the impact 
of  underwriting liberalizations on these models.  

A more general measure  for evaluating underwriting requirements is 
one based on asset shares. It allows a comparison of  the total assets 
generated by the entire issue blocks produced by different underwriting 
scenarios and is, therefore,  quite sensitive to the insurer 's  standard and 
substandard gross premium margins and the effect of  underwriting on 
nonissue and not-taken experience.  The effect of  underwriting require- 
ments on the applicant distribution can also be modeled and measured 
and would be of interest for tools thought to have a "bar r ie r  ef fec t"  on 
application amounts  (e.g., medical examinations).  

In addition, such a method allows for a more consistent t reatment  
among issue blocks in various markets  because the components  of  a gross 
premium are more accurately reflected. Finally, the concepts  of  "cash  
f low" underwriting can be quantified and incorporated into the technique 
by considering various patterns of  future interest rates. This measure,  
therefore, is more appropriate  as the basis of  what might be called the 
"corpora te  approach ."  

These considerations will be more fully explored in a forthcoming paper  
entitled "Asse t  Share Valuation of  Underwriting Requirements ."  The re- 
lationship of that approach to the mortality cost method investigated here 
will also be developed.  

APPENDIX 

In this appendix,  several  of  the propert ies of  a mortality cost function 
will be analyzed. To this end, let 

k - I  

M ( a ,  v ,  q ,  w)  = a~v~qk [ ]  (i -- q, -- W) 
k - I  [ I 

(A.I)  

= ~ ,  akv~qd2k- L , 
k - I  

where 

v = Discount factor, 0 < v ~< 1 , r = (1 + i) ~: 
a = (a. . . . . .  an) = Net-amount-at-r isk vector  per unit insured, a~ 

being the value for duration k, where 0 ~< a, ~< a~ ~< i f o r j  > 
k; 
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q = 

W = 

P k -  I ~- 
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(q~ . . . . .  q.) = Mortal i ty  vector ,  q~ being the probabil i ty that 
an insured life enter ing the kth durat ion will die during that 
durat ion,  0 ~ qk < 1, k = 1 . . . . .  n - 1, 0 <~ q~ <~ 1: 
(u,~ . . . . .  w,,_~) is the lapse vector ,  wk being the probabili ty 
that an insured life entering the kth dura t ion  will lapse during 
that durat ion,  0 ~ wk <~ 1 - q~: and 
k t 

[ I  (1 - qi - w ) .  
j I 

LEMMA 1. L e t  q be  a mo r t a l i t y  vector .  Then  fi~r any  lapse  vec tor  w, 

2 q k P k - I  ~ P j  I , j = 1 . . . . .  n . (A.2) 
k = j  

That  is, at  every  dura t ion ,  the  to ta l  p r o b a b i l i t y  o f  a f u t u r e  dea th  
c a n n o t  e x c e e d  I.  

Proo f .  Let  

mj = qk [ I  (1 - qi - w i )  . 
k ~ j  ~ j  

To prove  that mj <~ 1, it is sufficient to consider  the special case when w 
= 0, since m i will be smaller  for any other  w. 

Further,  for  w = 0, 

rtb - qi 
mi* ~ = 1 - -  qi 

and if m i <~ 1, this express ion  is bounded  above  by  m,. Hence ,  if mj ~< 1, 
we have mj+~ ~ 1. To prove  that m, ~ 1, note that 

m~ = 1 - ~ (1 - q J .  
k I 

It is apparent  f rom the p roof  o f  L e m m a  1 that if m, -= 1, then w, -- 0 

and m, = 1 for i i> j. The implication regarding m~ is also clear  when we 
make the obse rva t ion  t h a t m ,  = 1 if and only if q,, -= 1 and w, = O f o r i  
>~j. 

For notat ional  conven ience ,  M will a lways  be expressed  as a funct ion 
of  the variable(s) o f  interest .  For example ,  M ( a , ,  vo, q, wO, where ao, v~,, 
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and w,) are assumed fixed, will be denoted by M(q). Also, q < q' will be 
used to denote  that q, ~< q~ for all j and qi < q~ for at least one j .  

M is not a very interesting function of  v or a,  since it is clear that M(v)  
<<- M(v ' )  i f v  < v', and M(a)  <~ M(a ' )  i r a  < a ' .  That is, M is an increasing 
function of  v (decreasing function of i) and a. If  it could be assumed that 
q and w are independent ,  then it would also be clear that M(w' )  <~ M(w)  
for w < w' ,  that is, M is a decreasing function of w. However ,  on the 
basis of the theory that lapsation is selective, it might be expected that 
q will increase if w increases.  Hence,  the ultimate impact of increased 
lapsation on the value of  M is closely related to the behavior  of  M as a 
function of  q. The following results identify some of  this behavior. 

THEOREM 2. L e t  M(q)  be a mortali ty cost  f imc t ion ,  and let q, q' be 
mortali ty vectors  such that 0 < q < q'. Then 

0 <~ M(q')  - M(q) < M(q'  - q ) ,  (A.3) 

with equality i f  and  only i f  ei ther 

(a) ak~, = O, where  ko is the first duration f o r  which q~ > q~, or 
(b) ak = akofor k >~ ko, v = 1, and  

q~Pk-I = Pko (SO W~ = O f o r k  >l ko + 1) .  
k=ko+ I 

Proof.  To prove  that M(q) <<- M(q'), that is, that M is an increasing 
function of  q, it is sufficient to consider the special case where q and q'  
differ only in one component .  To see this, note that the general case can 
be reduced to at most  n special cases by the sequence q~, k = 0, 
1 . . . . .  n, defined by q~ = (q~ . . . . .  qk), where 

t q~ = q,  , j <<.k 

= q / ,  j > k .  

Since qo = q, q, _ q,, we have 

Now, 

M(q')  - M(q)  = ~ [M(q0 - M(q ~ ' ) ] .  
k : l  

M(qO = ~ ~ k ai) qJqi- ) , 
j =  I 

(A.4) 

(A.5) 
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and this can be rewritten as 

' 2 M(q  ~) = ~" ayiq~-tp~2~ ̀  + (q~. - qDa~vkp~:[ + 
,I ~ I .I k + I 

' p ~ j  ( A . 6 )  ay'q~ i , 

since qJ = q~-~ for j 4= k. For j t> k + 1, 

p~_, = (1 
q~ -- qk ] 

1 - q ,  - -  w~ ] p~:, ,  , 

which, when substituted in (A.6), produces 

M(q  k) = M(qk - , )  

/ 
+ (q~ qk) | k I, -- ak v P~ - i 

\ 

1 2 ayJq~_,p~.:,)  . (A.7) 
1 - q~wk i=~.1 

Now if condition (a) is satisfied, clearly M ( q  k) = M(q ~ ~) for all k, so M(q)  

= M(q ' ) .  Otherwise at > 0 for k = ko, and the last expression in (A.8) 
can be written as 

a,,'kP~:-I (1 - ,=,+,2 ~a~ v'-'q~- ' p~ p~ :'-----~,j]. 

Now if condition (b) is satisfied, M(q ~) = M(q  ~-r) for k = ko clearly, and 
on the basis of the remarks following Lemma 1, equality holds also for 
k > ko, so M(q ' )  = M(q) .  Otherwise, this expression is strictly greater 
than zero, because of  Lemma !, and the first inequality in (A.3) is verified. 

For the second inequality, note that because of (A.7) we have 

Now, 

M ( ¢ )  - M ( q  ~ ') <~ (q[ - q~)a~vkp~-I • 

k ~ l  

p~--I = ] - ]  (1 - q~ - w , )  

k - I  

< [ I  [1 - (q'r - q )  - wi] .  
j = l  

( , ¢ . 8 )  
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Hence ,  combin ing  this with (A.5) and (A.8), we have 

M(q ' )  - M(q)  < (q~ - q ~ ) a :  '~ l-I  [1 - (qj - q)  - n)] 
k I j = l  

= M ( q '  - q ) .  I] 

COROLLARY. L e t  q,  q'  be  m o r t a l i t y  v e c t o r s .  Then  

I M ( q ' )  - M ( q ) l  ~ M ( l q '  - ql), 

w h e r e  [q' - q] is the  v e c t o r  w h o s e  j t h  c o m p o n e n t  is Iq~ - q:] . 

P r o o f .  Let  q~' and qL be vec tors  defined by 

(A.9) 

q:: = max (qj, qj) , q~ = min (q:,  q/) . 

Then.  clearly, qL < q, q, < q V  unless q = q'  and (A.9) is immediate .  
Accord ing  to T h e o r e m  2, then,  

IM(q') - M(q)l = c l M ( q ' )  - M(q)] 

M ( q  t~) - M(qC) , 

where  c = l or  - !, Apply ing  T h e o r e m  2 to this last term and obse rv ing  
that qV - qL = Iq' - ql comple tes  the proof.  {] 

Next ,  the direct ional  der ivat ives  o f  M(q) will be cons idered .  Recall  that  
i fu  is a unit vector ,  that  is, lul - (Eu~) 'j2 = 1, then the directional der ivat ive  
o f  M(q)  at qo in the di rect ion o f  u,  deno ted  (OM/Ou)]q o, is defined by the 
fol lowing limit when  it exists:  

~UU qO 
= lira M(qo + hu)  - M(qo) 

~ 0  h 
(A. I O) 

Of course ,  if u equals  one o f  the canonical  unit vec tors ,  u = (0 . . . . .  1, 
. . . .  0), then (A. 10) is the definition o f  the j tb  partial derivat ive,  where  
uj = I. For  notat ional  conven ience ,  let M,',(qo) deno te  the direct ional  
der ivat ive,  and M~(qo), j = 1 . . . . .  n,  the n partial derivat ives.  

More  generally,  a mult ivariate  funct ion M(q)  is said to be differentiable 
at qo if there is a l inear funct ion L ,  L ( w )  = Eaiwi, such that 

M(qo + w) - M(qo) 
- L ~ w )  = O < ] w E ) .  
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That is, this difference tends to zero as [w I ~ O. 
It is not too difficult to prove that if M(q) is differentiable, then a, = 

M~(qo), and, hence, 

M~,(qo) = Eu~M~(qo). (A.11) 

The existence of partial derivatives does not necessarily imply differen- 
tiability, but the existence of continuous partials does (although this is not 
a necessary condition). For our purposes, M(q) as defined in (A.1) is 
certainly differentiable, since it is a polynomial function. 

THEOREM 3. L e t  M(q) be de f ined  as in (A.I ) ,  a n d  let u > 0 be a unit 
vector.  Then M,',(q) is a decreas ing  func t ion .  That  is, 

M' (q ' )  ~ M'(q)  i f  q < q' . (A. 12) 

In particular,  i f  q ~ is de f ined  as in (A.4), 

M~(q ~) - Mi (q  ~ ') = 
- ( q ;  - q~) 

l - -  q k  - -  It'~ 
Mi(q  k- ' )  , k < j 

= 0 ,  k = j (A.13) 

- ( q ~  - q~) 

i - q~ - w i 
M~(q k- ' )  , k > j . 

Proof .  Since (A.5) is an identity, it holds equally well for M'(q) .  Hence, 
it is clear that (A.12) is implied by (A.13) and (A.I 1), since u > 0, and 

M ' ~ ( q ' ) -  M ' ( q ) =  ~] ~] u j [ M j ( q  ~) - M j ( q k - ' ) ] .  
k J ) - I  

(A. 14) 

To prove (A.13), note that 

M~(q) = a y p j _ l  
1 

~,  a3,iq,pi_l.  (A.15) 
1 - q ,  - w , i - / . j  

This can be verified directly or by noting that because of(A.7), the quotient 
in (A.10) is constant, and hence the limit equals this constant. Since 
Mflq)  is independent of qj, it is clear that Mi(q') - M~(q'-') = 0. 
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NOW i f k  < j ,  all  p t e r m s  in (A.15)  c o n t a i n  q~, so  
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M 5 ( ¢ )  = aYpL ,  1 2 ¢' v i " l knk  
~ i  tl  i Y i  I 

1 - q )  - u ~ , ' ~ j . i  

, 

1 q~ vt'k 1 - @ ~ - % i=j+, 

=(, ) q* Z q* M~(qk-,) . 
1 - qk  Z w ,  

A l t e r n a t i v e l y ,  i f  k > j ,  

M 5 ( ¢ )  = a y p L ,  

' 

1 - q ~ -  w j  i = i * ,  
aiviq~p~_ i + i k k ) 

a i  v q i P i -  i • 
t=k+l 

(A.  16) 

N o w  fo r  i <~ k, P L  ~ = P~--,J. O t h e r w i s e ,  as  a b o v e ,  

1 - q ~  - w ~  
P L ,  - PL-? • 

1 - q ~  - w k  

A l s o ,  qf = q~-I dr_ (q~. __ q * ) a n d  q~ = q f - t  f o r  i 4: k. 
R e w r i t i n g  (A .16 ) ,  w e  o b t a i n  

M;(¢) = aYp~--; 
1 

1 - q ) - ' - w  i 

i=j+ I 

1 

1 - q ~ - '  - w i  

q'k - qk ) 2 ai"iq~,-'P~5, ' i ! - q~ - w ,  i=k+~ 
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= Mj(q  k- ' )  
q'~ - q,~ 

1 - q j  - w 2 

x a~v*P~- I a~v'qf-'Pf ' 
l - q k  - w k i : , ~ + J  

q~ - q, 
= M~(q*- ') , M ~ ( q ' - ' ) .  

1 - q j  - wj 

COROLLARY. L e t  q, q' be mortal i ty  vec tors  sat is fy ing q < q'.  Then 

M(q') = M(q) + ,~,~ (q'~ - q,)j:,h~ ( l  ) qJ - qJ M~(q).  (A. 17) 
1 - -  q~ - w ~  

Proof.  Rewriting (A.7), we have 

M(q~) _ M(q~-t)  = (q, _ q~)M,(q~- , ) .  (A.18) 

Applying (A,13) k - I times to M~(q ~ ~) yields 

j =  I 
) qJ - q' M~(q) ,  

I - ~ - wi 
(A. 19) 

Combining (A.5), (A.18), and (A.19) completes the proof. [1 

COROLLARY. L e t  q, q' ,  and  q/' be mortal i ty  vectors  and w a lapse 
t t  vec tor  s a t i s f y i n g q < q ' , q i  <~ I - q '  - w ~ f o r j  = 1 2, n - 1 

Then 

M(q '  + q") - M(q')  <~ M(q + q") - M ( q ) .  (A.20) 

Proof .  Applying (A. 17) to each difference and utilizing Theorem 3 com- 
plete the proof. 

As was noted before,  if it is assumed that q and w are independent,  it 
becomes clear that M is a decreasing function of w, That is, M ( w ' )  <~ 
M(w)  for w < w'. However,  it might be assumed that as w increases, q 
increases as well, reflecting the opinion that healthy lives are more likely 
to lapse. It could be possible, therefore, that the value of  M remains stable 
as w increases. Indeed, given q, w, w' with w < w',  there is a " 'surface" 
of solutions q' in n-dimensional space that satisfies 

M(q' ,  w')  = M(q,  w ) .  (A.21) 
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It is natural to wonder whether  a lapse vector  w', where w < w', could 
be created by a simple forward "redis t r ibut ion"  of the w lapsed group, 
without the need for " e x t r a "  lapses. This would leave the actual yearly 
claim amount  experience,  as well as the value of M, stable. 

The following lemma indicates that this is not possible. 

LEMMA 4. L e t  dj equal  the n u m b e r  o f  claim units and  s t the n u m b e r  
o f  surrender  units f o r  durat ion j ,  j = 1 . . . . .  n - 1. Le t  sj be any 
nonnegat ive  sequence  sat is fying 

n - I  n - I  

s~ <. ~ s, ; s; 4= & f o r  s o m e  i . (A.22) 
j=l j=l 

Then there exists k such that w~ < wk, where  w and  w' are the lapse 
vectors impl ied  by si, ~ and  sj, d~, respectively.  

Proof.  Let {s~} be given, and let xt be defined by s l = sj + xt. Hence,  
Ex, ~< O; Jetting lt+t = 1, - d t - st, we have 

w~ = (sj + x~) l j -  ~ x, , w i = . 
i=l -~j 

(A.23) 

Now assume that wj t> ~,~ for all j .  From (A.23), this implies that there 
is a solution, x = (x, . . . . .  x,_ ~), to the following system of equations: 

j I n - I  

Xi + a t ~ x i > / 0 ,  j = 1 . . . . .  n - 1 • ~ x i ~ 0 ,  (A.24) 
i= l  i~ l  

where wj < 1 for all j .  
Now 

n - I  n 2 

£ xi ~ O , Xn-- ' + k t ' , t _ l Z  .'1(i ~ 0 
i=l t=l 

imply that either 

n-2 

(a) x._,  = ~ x , = 0  
i=1 

or 

(b) x~_~ >0, 
n - 2  

x i < 0 .  
i= l  
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Assuming (a) and (A.24) f o r j  = n - 2 implies that either 

n - 3  

(aa) x ,_ ,  = ~ ,  xi = O,  
l I 

o r  

n - 3  

(ab) x°-2 > O , ~ ,  xi < O . 
i = 1  

Assuming (b) and (A.24) f o r j  = n - 2 implies (ab) above.  Continuing in 
this way, one of  two cases finally emerges:  (A) xj = 0 for all j ;  (B) x,. > 
0 and Xl < 0. Case (A) contradicts the assumption that sl ~ s~ for some 
i, and Case (B) contradicts  the assumption that w', ~> u!~ for allj. Therefore ,  
it must be that w;, < u,~ for some k, completing the proof. H 

Hence,  if q, w, w' are given, w < w', and q' can be defined to produce  
the same annual claim amounts  as q, it must be true that there are ~ 'extra"  
lapses given by w' in the sense that Ysl > Ys~. 

If we assume that all the additional lapsed policies came from the group 
that would have survived n policy durations given the decrements  q and 
w, it is clear that the actual amount  of  claims each year  would be the 
same, and the " imp l i ed"  q'  would satisfy (A.21). This is truly a worst-  
case scenario of  selective lapsation, and the resultant q' represents  a 
realistic upper bound to the mortali ty vectors  that could be " c a u s e d "  by 
the increased w'. Specifically, q' is defined recursively by 

, P ~  qk = q, , , k = 1 . . . . .  n ,  (A.25) 
P , ~  - I 

where p '  is defined with q'  and w'. 
Otherwise,  if any of  the additional lapsed policies came from the group 

of future mortality claims given q and w, the construct ion in (A.25) would 
eventually fail, since at least one of  the necessary q~'s would require 
claims from the survivor  group. In this case,  one would always have 
M(q' ,  w') <~ M(q, w) for the implied q' .  

For all practical purposes ,  therefore,  M is a decreasing function of  w 
even when selective lapsation is taken into account.  

Our final investigation concerns the behavior  of  M(q ' ,  w) - M(q,  w) 
as a function of  w when q' > q and each is assumed independent of  w. 

As it turns out, M(q ' ,  w) - M(q,  w) is not a monotonic function of  w 
without further restrictions. To see this, let k~, k2 be such that q', = q, for 
i < k~ and i > k2. Then since q'i = q, for i < k~, 
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M ( q ' ,  w)  - M(q ,  w) 

= akv k q~ (1 - q!j - wfl - qk l~  (1 - qj - ~ )  
k~k I j ~ }  j ~ l  
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* ' - '  ( A . 2 6 )  
17[ ( 1 -  q j -  w i ) ~  akv k 
j= I k~kl  

[- t k - I  ] 

× L qk J-I,, ( 1 -  q ~ - w ) -  qk j~k l  ~-~ (1 q i -  ;iX) ' 

N o w  since the last sum in (A.26) is nonnegat ive  by Theo rem 2, and 
apparent ly  independent  o f  ~ for  j = I . . . . .  kj - 1, it is clear  that  
M ( q ' ,  w) - M ( q ,  w) is a decreas ing  funct ion  o f  these w/s ,  since this is 
true o f  the p roduc t  in (A.26). 

On the o ther  hand,  since q~ = q~ for  i > k:, 

M ( q ' ,  w)  - M ( q ,  w) 

E k r t = a , v  (qgP, - i  - qkP~,-O + 
k = 1 k =k2+ ! 

k ¢ a~v (P~-I - P ,  ~)qk - 

(A.27) 

N o w  the first sum in (A.27) is independent  o f  ~ f o r j  = k2 . . . . .  n - 1. 
Also,  the second  sum can be rewri t ten by not ing that  

k - I  

' I - I  P*- .  - Pk-J = 
d'=k2+ I 

× 

( !  - q1  - w j )  

(1 - q ~  - w i )  - [-[ (! - q , , -  ~ )  , 

(A.28) 

for  k i> k2 + 1, and this is clearly an increasing funct ion of  ~9 for  j = 
k2 . . . . .  k - 1, since p5 < p j  for  kj ~<j  ~ k, implies that all partial 
der ivat ives  with respect  to these ~[i's are posit ive.  Hence ,  M ( q ' ,  w)  - 

M(q ,  w) is an increasing funct ion o f  ,~[~, f o r j  = k~ . . . . .  n - I. 
The fol lowing theorem provides  a condi t ion  under  which M ( q ' ,  w) - 

M ( q ,  w) is a dec reas ing  funct ion o f  w. 

THEOREM 5. L e t  q, q' ,  a n d  wo be  g i ven ,  s u c h  t h a t  q < q' a n d  

' ' k = 1, n (A.29) qkPk - I >I q*P~- I . . . . . .  
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where  p'~_ ~ and  pk ~ ~ are def ined with wo. Le t  Ho be the hypercube  in 
9t ~- ~ de t e rmined  by wo, that is, 

/4o = {w ~ ~ " - '  ]w < Wo}. (A.30) 

Then,  M(q' ,  w) - M(q,  w) is a decreas ing  f unc t ion  o f  w f o r  w ~ H,,. 

Proof .  First of  a l l  note that 

Pk-~ ~= 1 S W ' 

and this is a decreasing function of %, j = l . . . . .  k - 1, s i n c e q < q ' .  
Hence,  if (A.29) is true for Wo, it is also true for all w < Wo, that is, 
everywhere in H0. 

Now let q, q' ,  q < q' ,  w ~ 1to be given. Then 

M(q' ,  w) - M(q,  w) = ~ a,v k (P~- '  q'~ - q~) pk_, . (A.32) 

By the above remarks,  the bracketed expressions in (A.32) are nonneg- 
ative, decreasing functions of the wi's, and since the p ,_ds  clearly have 
the same property, their products are decreasing functions, which com- 
pletes the proof. 

It should be noted that the inequality in (A.29) cannot be productively 
reversed, since q < q' and q~p'~_, ~ qkp~- ~ would imply that q = q'.  Also, 
this inequality is somewhat  restrictive, since it requires that if q~ > qj for 
j = k, then q~ > q1 all j > k. Hence,  this theorem has applicability only 
to such mortality vectors.  
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DISCUSSION OF PRECEDING PAPER 

E. S. SH1U: 

Mr. Reitano is to be complimented for this comprehensive study on 
evaluating underwriting requirements.  I wish to make the following two 
points. 

1. It is formulated in Section II, B, that the value of  an underwriting 
requirement for an application is given by 

M(q ' )  - M ( q ) ,  (6) 

where q is the standard mortality vector  and q' is the mortality vector  
determined by the underwriting tool. I find this puzzling. 

Consider the very simple case where the application is for a single 
premium whole life insurance policy with the death benefit of $1 payable 
at the end of the year of  death. Since we are dealing with a single premium 
policy, we need not consider lapse rates; thus 

M ( q )  = ~,~.o (1 - , . ,V)v '+' ,p~,q~., 

= Z,~o (l - A . . . . .  ,) v'÷' ,iq~, 

= A~ - ~ , ~ o A  . . . . .  y + l  ,rqx. 

Hence 

M ( q ' )  - M ( q )  - (A'~ - Ax)  = ~,,~o v'+l( A ...... , ,Iq~ - A'~+,+, ,tq',) • (t) 

On the other  hand, if the underwriting tool had not been ordered and 
the single premium policy issued standard, the extra costs the company 
would expect  to incur would be the extra  premium A'~ - Ax. However ,  
the right-hand side of (t)  is not necessarily zero. If by extra mortality 
costs we mean net extra premiums, then the proof  given by W. Shut  on 
page 102 of  his paper " A  General Method of  Calculating Experience Net 
Extra  Premiums Based on the Standard Net Amount at Risk" ( T S A ,  Vol. 
VI [1954]) shows that equation (5) is the correct  formula when lapse rates 
are zero. 

It is interesting to note that A~ can be expressed in a form like the 
definition of  the mortality cost function given in equation (1), that is, 

A~ = ~,~-o (I - , + , V ) v ' ~ ' q , ~ , .  
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2. The results in the Appendix are quite interesting. Some alternative 
proofs are outlined below. 

a) Lemma I is a consequence of the equation 

2 ,  IIq, = J  uo, - ,,p~. 

b) Several of  the inequalities can be proved by the mean value theorem: 
If f is a real-valued and continuously differentiable function defined on a 
Euclidean space, then for each pair of  vectors x and y, there exists a 
number t, t ~ (0, 1), such that 

f ( x )  = f l y )  + ( x  - y )  • V f l t x  + (1 - t )y )  . 

Thus, to prove the first inequality in Theorem 2, we simply check that 
the gradient vector  of m is nonnegative,  that is, 

0 
- - M ( q ) > ~ O ,  j =  1,2 . . . . .  n .  
Oq~ 

Multiplying (1 - q~ - %) to both sides of equation (A.15) and applying 
Lemma 1 yield the result. 

Similarly, as we verify the inequalities 

~2 

M ( q )  <~ 0 , 
~qi Oqj 

i , j  = 1,2  . . . . .  n ,  

and because the vector  u is nonnegative,  we prove the first half of Theorem 
3. 

c) The second inequality in (A.3) is a "triangle inequality." Put q* = 
q' - q. To prove 

M ( q ' )  = M ( q  + q*)<~ M ( q )  + M(q*) , 

it is sufficient to show,for each k, 

t t ~ ~g 
P*q~ ~ 1 < Pkqk . 1 + P k q k - , I  • 

The last inequality holds because 

p'~ <~ minimum {p,, p*} . 
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(AUTHOR'S REVIEW OF DISCUSSION) 

ROBERT a. RE1TANO" 

I would like to thank Dr. Shiu for his discussion of  my paper. Before 
commenting on his first remark, it is valuable to point out that the defi- 
nition of M given in equation (l) and formalized as the function M(a,  v, 
q, w) in equation (A.1) did not imply that (NAR),+,  or a~ was a function 
of v, q, or w. This term was intended to reflect the policy values under 
consideration. Although it could be defined in terms of  policy reserves,  
it might also be defined to reflect policy cash values, gross premiums, and 
the insurer 's practices regarding annual and settlement dividends, or sim- 
ply set equal to l in some cases. In addition, the parameters v, q, q', and 
w were intended to represent actual experience,  and even if (NAR),+,  is 
defined in terms of  policy reserves,  the v and q underlying those reserves 
rarely would be utilized for the respective variables in M. Finally, once 
(NAR) ,~ ,  is defined for a given policy, it is to be used in the calculation 
of both M(q) and M(q' ) .  

If we assume, then, as did Dr. Shiu, that ( N A R ) , .  ~ is equal to 1 - ,  ~, V~, 
his equation (t) becomes 

M(q' )  - M(q)  = A', - A~ - ~,,~o v'+' ,.,V,(,~q~ - ,,q.,), (D.I) 

where A, (A ~) is standard notation for the net single premium defined with 
respect to q (q') and v, and for the moment  can be considered independent 
of the factors underlying ,+,V,. However,  his question is still material, 
since it is clear from equation (D.1) above that, in general, 

M(q' )  - M(q) 4: A'~ - A ~ ,  (D.2) 

where perhaps equality was expected. He also points out the following 
related result from Mr. Shur 's  paper (eq. [7] on p. 101 of TSA,  Vol. VI): 
If ,+,Vx and A, are defined in terms of v and q, A'~ defined in terms of v 
and q',  then, with w = 0, 

A~ - A~ = X,.o v,+' ,p'(q'+, - q, , , )( l  - ,+IV,), (D.3) 

where the right-hand side of (D.3) is essentially the same as K defined in 
(5), with (NAR),+~ set equal to 1 - ,÷~V~. 

As noted above,  the parameters v, q, q ' ,  and w are intended to represent 
actual experience and usually will be independent of  (NAR),+I  even when 
defined this way. However ,  on a valuation net premium basis, or when 
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,~ ,V, is an experience reserve defined in terms of q, it might appear that 
A'~ - A, is the correct  value of the underwriting requirement, which 
according to (D.3) supports the use of K rather than M(q') - M(q). 

Intuitively, once (NAR) , . ,  is defined, M(q) is the experience net single 
premium for the policy issued to a life with mortality q, lapse w, and 
interest i; M(q') is similarly defined but with reference to mortality q'. 
Therefore,  M(q') - M(q) is by definition the additional experience net 
single premium associated with forgoing the underwriting requirement 
under study and consequently incurring mortality at level q' rather than 
q. The key point here is that the elimination of  this underwriting require- 
ment had no effect on (NAR), ,  ,. That is, without underwriting, the life 
with mortality q' would have been issued standard, not substandard, since 
the extra hazard presumably would not have been recognized. 

To formalize this in the context of Dr. Shiu's remark, consider the 
following. As derived in chapter 5 of Jordan 's  Life Contingencies, the 
level annual net premium for a life insurance policy can be split into a 
death benefit component  defined on a net-amount-at-risk basis, and a 
policy reserve increment component .  In the case of  whole life, one has 
the following result: 

P, = vq,. ,( l  - ,.,V~) + (v ,~ LV, - ,V)  . (D.4) 

If (D.4) is multiplied by v t ,p, (w = 0) and summed from t = 0, one obtains 
the following identity: 

A, = £,~o v'~' ,P~q~+, (1 - ,+,V~) + £,~o v' ~odv ,~,V~ - ,V,) . (D.5) 

In other words, At can be thought of as the present value of death benefits 
on a net-amount-at-risk basis, plus the present value of  reserve increments 
for the survivors. Similarly, A~ could be expressed as in (D.5) with all 
symbols involving q' primed. In other words,  A', contemplates reserve 
values at the ,V', level. 

In the context  of the problem at hand, it is assumed that, without 
underwriting, a standard policy would have been issued and standard 
reserves maintained, even though the mortality would actually be at the 
q' level. Consequently,  the net single premium for such a policy, utilizing 
(D.5) as a defining equation, becomes 

AI~ = E,~o v'+~ ,p',q'~,(l - ,~,V~) + E,~o v' ,p~(v ,+,V~ - , V O .  (D.6) 
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Hence, if the underwriting requirement under study is eliminated, the 
actual increase in the net single premium is given by A'[ - Ax, which 
according to (D.5) and (D.6) becomes 

AI" - A~ = M ( q ' )  - M ( q )  - ~L,~o v'(,p~ - ,p.~)(v,+,V~ - , V ~ ) ,  (D.7) 

where w = 0 in all ,p~ and ,p ' .  
Compared with the intuitive argument above that yielded M ( q ' )  - M ( q )  

exactly, (D.7) is more explicit in that it displays the fact that, since q' > 
q, there will be fewer lives at future durations for which policy reserves 
need be maintained, and hence some savings are incurred. 

In my paper, the summation in (D.7) was eliminated as a somewhat 
academic adjustment, since it will usually be quite small and its effect 
will be totally dominated by the lack of certainty in the predicted future 
lapse rate vector w, which will be used in the actual calculated values of 
both ,p, and ,p', in M ( q ' )  - M ( q ) .  

The expression in (D.4) is easily modified for an n-payment whole life 
policy if,,P, is replaced by 0 for t t> n. If this expression is then multiplied 
by v' and summed from t = 0, one obtains 

~',~o v " ' q ~ , ( 1  - ,*TV,) = c,A~ , (D.8) 

where c', = iimlgL:m. Consequently, in the single premium case, c,, = 1, 
and one has Dr. Shiu's interesting development for A~. 

Regarding Dr. Shiu's second point, it was most gratifying to receive 
alternative derivations of some of the results in the appendix. His sug- 
gestions provide quicker verifications of the broader aspects of these 
results, but may yield somewhat less informative results than the methods 
employed. For example, utilizing the mean value theorem for the first 
inequality in Theorem 2 provides less insight into the conditions that result 
in equality. Similarly, his method of verifying the second inequality in 
Theorem 2 results in the replacement of strict inequality with "~<". How- 
ever, the power of the techniques of multivariate analysis cannot be over- 
stated and will often easily provide results for which direct verification 
is unwieldy. 

Again, I would like to thank Dr. Shiu for his thought-provoking dis- 
cussion and the reference to Mr. Shur's paper on a related theme. 




